| // Small bench routine for Eigen available in Eigen |
| // (C) Desire NUENTSA WAKAM, INRIA |
| |
| #include <iostream> |
| #include <fstream> |
| #include <iomanip> |
| #include <unsupported/Eigen/SparseExtra> |
| #include <Eigen/SparseLU> |
| #include <bench/BenchTimer.h> |
| #ifdef EIGEN_METIS_SUPPORT |
| #include <Eigen/MetisSupport> |
| #endif |
| |
| using namespace std; |
| using namespace Eigen; |
| |
| int main(int argc, char **args) { |
| // typedef complex<double> scalar; |
| typedef double scalar; |
| SparseMatrix<scalar, ColMajor> A; |
| typedef SparseMatrix<scalar, ColMajor>::Index Index; |
| typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix; |
| typedef Matrix<scalar, Dynamic, 1> DenseRhs; |
| Matrix<scalar, Dynamic, 1> b, x, tmp; |
| // SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver; |
| // #ifdef EIGEN_METIS_SUPPORT |
| // SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver; |
| // std::cout<< "ORDERING : METIS\n"; |
| // #else |
| SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver; |
| std::cout << "ORDERING : COLAMD\n"; |
| // #endif |
| |
| ifstream matrix_file; |
| string line; |
| int n; |
| BenchTimer timer; |
| |
| // Set parameters |
| /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ |
| if (argc < 2) assert(false && "please, give the matrix market file "); |
| loadMarket(A, args[1]); |
| cout << "End charging matrix " << endl; |
| bool iscomplex = false, isvector = false; |
| int sym; |
| getMarketHeader(args[1], sym, iscomplex, isvector); |
| // if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; } |
| if (isvector) { |
| cout << "The provided file is not a matrix file\n"; |
| return -1; |
| } |
| if (sym != 0) { // symmetric matrices, only the lower part is stored |
| SparseMatrix<scalar, ColMajor> temp; |
| temp = A; |
| A = temp.selfadjointView<Lower>(); |
| } |
| n = A.cols(); |
| /* Fill the right hand side */ |
| |
| if (argc > 2) |
| loadMarketVector(b, args[2]); |
| else { |
| b.resize(n); |
| tmp.resize(n); |
| // tmp.setRandom(); |
| for (int i = 0; i < n; i++) tmp(i) = i; |
| b = A * tmp; |
| } |
| |
| /* Compute the factorization */ |
| // solver.isSymmetric(true); |
| timer.start(); |
| // solver.compute(A); |
| solver.analyzePattern(A); |
| timer.stop(); |
| cout << "Time to analyze " << timer.value() << std::endl; |
| timer.reset(); |
| timer.start(); |
| solver.factorize(A); |
| timer.stop(); |
| cout << "Factorize Time " << timer.value() << std::endl; |
| timer.reset(); |
| timer.start(); |
| x = solver.solve(b); |
| timer.stop(); |
| cout << "solve time " << timer.value() << std::endl; |
| /* Check the accuracy */ |
| Matrix<scalar, Dynamic, 1> tmp2 = b - A * x; |
| scalar tempNorm = tmp2.norm() / b.norm(); |
| cout << "Relative norm of the computed solution : " << tempNorm << "\n"; |
| cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl; |
| |
| return 0; |
| } |