|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2011-2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_BASIC_PRECONDITIONERS_H | 
|  | #define EIGEN_BASIC_PRECONDITIONERS_H | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A preconditioner based on the digonal entries | 
|  | * | 
|  | * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix. | 
|  | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: | 
|  | \code | 
|  | A.diagonal().asDiagonal() . x = b | 
|  | \endcode | 
|  | * | 
|  | * \tparam Scalar_ the type of the scalar. | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * This preconditioner is suitable for both selfadjoint and general problems. | 
|  | * The diagonal entries are pre-inverted and stored into a dense vector. | 
|  | * | 
|  | * \note A variant that has yet to be implemented would attempt to preserve the norm of each column. | 
|  | * | 
|  | * \sa class LeastSquareDiagonalPreconditioner, class ConjugateGradient | 
|  | */ | 
|  | template <typename Scalar_> | 
|  | class DiagonalPreconditioner { | 
|  | typedef Scalar_ Scalar; | 
|  | typedef Matrix<Scalar, Dynamic, 1> Vector; | 
|  |  | 
|  | public: | 
|  | typedef typename Vector::StorageIndex StorageIndex; | 
|  | enum { ColsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic }; | 
|  |  | 
|  | DiagonalPreconditioner() : m_isInitialized(false) {} | 
|  |  | 
|  | template <typename MatType> | 
|  | explicit DiagonalPreconditioner(const MatType& mat) : m_invdiag(mat.cols()) { | 
|  | compute(mat); | 
|  | } | 
|  |  | 
|  | EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_invdiag.size(); } | 
|  | EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_invdiag.size(); } | 
|  |  | 
|  | template <typename MatType> | 
|  | DiagonalPreconditioner& analyzePattern(const MatType&) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatType> | 
|  | DiagonalPreconditioner& factorize(const MatType& mat) { | 
|  | m_invdiag.resize(mat.cols()); | 
|  | for (int j = 0; j < mat.outerSize(); ++j) { | 
|  | typename MatType::InnerIterator it(mat, j); | 
|  | while (it && it.index() != j) ++it; | 
|  | if (it && it.index() == j && it.value() != Scalar(0)) | 
|  | m_invdiag(j) = Scalar(1) / it.value(); | 
|  | else | 
|  | m_invdiag(j) = Scalar(1); | 
|  | } | 
|  | m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatType> | 
|  | DiagonalPreconditioner& compute(const MatType& mat) { | 
|  | return factorize(mat); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename Rhs, typename Dest> | 
|  | void _solve_impl(const Rhs& b, Dest& x) const { | 
|  | x = m_invdiag.array() * b.array(); | 
|  | } | 
|  |  | 
|  | template <typename Rhs> | 
|  | inline const Solve<DiagonalPreconditioner, Rhs> solve(const MatrixBase<Rhs>& b) const { | 
|  | eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized."); | 
|  | eigen_assert(m_invdiag.size() == b.rows() && | 
|  | "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b"); | 
|  | return Solve<DiagonalPreconditioner, Rhs>(*this, b.derived()); | 
|  | } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  |  | 
|  | protected: | 
|  | Vector m_invdiag; | 
|  | bool m_isInitialized; | 
|  | }; | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief Jacobi preconditioner for LeastSquaresConjugateGradient | 
|  | * | 
|  | * This class allows to approximately solve for A' A x  = A' b problems assuming A' A is a diagonal matrix. | 
|  | * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for: | 
|  | \code | 
|  | (A.adjoint() * A).diagonal().asDiagonal() * x = b | 
|  | \endcode | 
|  | * | 
|  | * \tparam Scalar_ the type of the scalar. | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * The diagonal entries are pre-inverted and stored into a dense vector. | 
|  | * | 
|  | * \sa class LeastSquaresConjugateGradient, class DiagonalPreconditioner | 
|  | */ | 
|  | template <typename Scalar_> | 
|  | class LeastSquareDiagonalPreconditioner : public DiagonalPreconditioner<Scalar_> { | 
|  | typedef Scalar_ Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef DiagonalPreconditioner<Scalar_> Base; | 
|  | using Base::m_invdiag; | 
|  |  | 
|  | public: | 
|  | LeastSquareDiagonalPreconditioner() : Base() {} | 
|  |  | 
|  | template <typename MatType> | 
|  | explicit LeastSquareDiagonalPreconditioner(const MatType& mat) : Base() { | 
|  | compute(mat); | 
|  | } | 
|  |  | 
|  | template <typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& analyzePattern(const MatType&) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& factorize(const MatType& mat) { | 
|  | // Compute the inverse squared-norm of each column of mat | 
|  | m_invdiag.resize(mat.cols()); | 
|  | if (MatType::IsRowMajor) { | 
|  | m_invdiag.setZero(); | 
|  | for (Index j = 0; j < mat.outerSize(); ++j) { | 
|  | for (typename MatType::InnerIterator it(mat, j); it; ++it) m_invdiag(it.index()) += numext::abs2(it.value()); | 
|  | } | 
|  | for (Index j = 0; j < mat.cols(); ++j) | 
|  | if (numext::real(m_invdiag(j)) > RealScalar(0)) m_invdiag(j) = RealScalar(1) / numext::real(m_invdiag(j)); | 
|  | } else { | 
|  | for (Index j = 0; j < mat.outerSize(); ++j) { | 
|  | RealScalar sum = mat.col(j).squaredNorm(); | 
|  | if (sum > RealScalar(0)) | 
|  | m_invdiag(j) = RealScalar(1) / sum; | 
|  | else | 
|  | m_invdiag(j) = RealScalar(1); | 
|  | } | 
|  | } | 
|  | Base::m_isInitialized = true; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatType> | 
|  | LeastSquareDiagonalPreconditioner& compute(const MatType& mat) { | 
|  | return factorize(mat); | 
|  | } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  |  | 
|  | protected: | 
|  | }; | 
|  |  | 
|  | /** \ingroup IterativeLinearSolvers_Module | 
|  | * \brief A naive preconditioner which approximates any matrix as the identity matrix | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa class DiagonalPreconditioner | 
|  | */ | 
|  | class IdentityPreconditioner { | 
|  | public: | 
|  | IdentityPreconditioner() {} | 
|  |  | 
|  | template <typename MatrixType> | 
|  | explicit IdentityPreconditioner(const MatrixType&) {} | 
|  |  | 
|  | template <typename MatrixType> | 
|  | IdentityPreconditioner& analyzePattern(const MatrixType&) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | IdentityPreconditioner& factorize(const MatrixType&) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | IdentityPreconditioner& compute(const MatrixType&) { | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template <typename Rhs> | 
|  | inline const Rhs& solve(const Rhs& b) const { | 
|  | return b; | 
|  | } | 
|  |  | 
|  | ComputationInfo info() { return Success; } | 
|  | }; | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_BASIC_PRECONDITIONERS_H |