|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_UMFPACKSUPPORT_H | 
|  | #define EIGEN_UMFPACKSUPPORT_H | 
|  |  | 
|  | // for compatibility with super old version of umfpack, | 
|  | // not sure this is really needed, but this is harmless. | 
|  | #ifndef SuiteSparse_long | 
|  | #ifdef UF_long | 
|  | #define SuiteSparse_long UF_long | 
|  | #else | 
|  | #error neither SuiteSparse_long nor UF_long are defined | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | // IWYU pragma: private | 
|  | #include "./InternalHeaderCheck.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /* TODO extract L, extract U, compute det, etc... */ | 
|  |  | 
|  | // generic double/complex<double> wrapper functions: | 
|  |  | 
|  | // Defaults | 
|  | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, int) { umfpack_di_defaults(control); } | 
|  |  | 
|  | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, int) { | 
|  | umfpack_zi_defaults(control); | 
|  | } | 
|  |  | 
|  | inline void umfpack_defaults(double control[UMFPACK_CONTROL], double, SuiteSparse_long) { | 
|  | umfpack_dl_defaults(control); | 
|  | } | 
|  |  | 
|  | inline void umfpack_defaults(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) { | 
|  | umfpack_zl_defaults(control); | 
|  | } | 
|  |  | 
|  | // Report info | 
|  | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, int) { | 
|  | umfpack_di_report_info(control, info); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, int) { | 
|  | umfpack_zi_report_info(control, info); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], double, SuiteSparse_long) { | 
|  | umfpack_dl_report_info(control, info); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_info(double control[UMFPACK_CONTROL], double info[UMFPACK_INFO], std::complex<double>, | 
|  | SuiteSparse_long) { | 
|  | umfpack_zl_report_info(control, info); | 
|  | } | 
|  |  | 
|  | // Report status | 
|  | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, int) { | 
|  | umfpack_di_report_status(control, status); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, int) { | 
|  | umfpack_zi_report_status(control, status); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, double, SuiteSparse_long) { | 
|  | umfpack_dl_report_status(control, status); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_status(double control[UMFPACK_CONTROL], int status, std::complex<double>, SuiteSparse_long) { | 
|  | umfpack_zl_report_status(control, status); | 
|  | } | 
|  |  | 
|  | // report control | 
|  | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, int) { umfpack_di_report_control(control); } | 
|  |  | 
|  | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, int) { | 
|  | umfpack_zi_report_control(control); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_control(double control[UMFPACK_CONTROL], double, SuiteSparse_long) { | 
|  | umfpack_dl_report_control(control); | 
|  | } | 
|  |  | 
|  | inline void umfpack_report_control(double control[UMFPACK_CONTROL], std::complex<double>, SuiteSparse_long) { | 
|  | umfpack_zl_report_control(control); | 
|  | } | 
|  |  | 
|  | // Free numeric | 
|  | inline void umfpack_free_numeric(void **Numeric, double, int) { | 
|  | umfpack_di_free_numeric(Numeric); | 
|  | *Numeric = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, int) { | 
|  | umfpack_zi_free_numeric(Numeric); | 
|  | *Numeric = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, double, SuiteSparse_long) { | 
|  | umfpack_dl_free_numeric(Numeric); | 
|  | *Numeric = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, std::complex<double>, SuiteSparse_long) { | 
|  | umfpack_zl_free_numeric(Numeric); | 
|  | *Numeric = 0; | 
|  | } | 
|  |  | 
|  | // Free symbolic | 
|  | inline void umfpack_free_symbolic(void **Symbolic, double, int) { | 
|  | umfpack_di_free_symbolic(Symbolic); | 
|  | *Symbolic = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, int) { | 
|  | umfpack_zi_free_symbolic(Symbolic); | 
|  | *Symbolic = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, double, SuiteSparse_long) { | 
|  | umfpack_dl_free_symbolic(Symbolic); | 
|  | *Symbolic = 0; | 
|  | } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>, SuiteSparse_long) { | 
|  | umfpack_zl_free_symbolic(Symbolic); | 
|  | *Symbolic = 0; | 
|  | } | 
|  |  | 
|  | // Symbolic | 
|  | inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const double Ax[], void **Symbolic, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_di_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_symbolic(int n_row, int n_col, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | void **Symbolic, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zi_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info); | 
|  | } | 
|  | inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], | 
|  | const SuiteSparse_long Ai[], const double Ax[], void **Symbolic, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_dl_symbolic(n_row, n_col, Ap, Ai, Ax, Symbolic, Control, Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_symbolic(SuiteSparse_long n_row, SuiteSparse_long n_col, const SuiteSparse_long Ap[], | 
|  | const SuiteSparse_long Ai[], const std::complex<double> Ax[], void **Symbolic, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zl_symbolic(n_row, n_col, Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Control, Info); | 
|  | } | 
|  |  | 
|  | // Numeric | 
|  | inline int umfpack_numeric(const int Ap[], const int Ai[], const double Ax[], void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_di_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_numeric(const int Ap[], const int Ai[], const std::complex<double> Ax[], void *Symbolic, | 
|  | void **Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zi_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info); | 
|  | } | 
|  | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], const double Ax[], | 
|  | void *Symbolic, void **Numeric, const double Control[UMFPACK_CONTROL], | 
|  | double Info[UMFPACK_INFO]) { | 
|  | return umfpack_dl_numeric(Ap, Ai, Ax, Symbolic, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_numeric(const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
|  | const std::complex<double> Ax[], void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zl_numeric(Ap, Ai, &numext::real_ref(Ax[0]), 0, Symbolic, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | // solve | 
|  | inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const double Ax[], double X[], const double B[], | 
|  | void *Numeric, const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_di_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_solve(int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zi_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]), | 
|  | 0, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
|  | const double Ax[], double X[], const double B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_dl_solve(sys, Ap, Ai, Ax, X, B, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_solve(int sys, const SuiteSparse_long Ap[], const SuiteSparse_long Ai[], | 
|  | const std::complex<double> Ax[], std::complex<double> X[], | 
|  | const std::complex<double> B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) { | 
|  | return umfpack_zl_solve(sys, Ap, Ai, &numext::real_ref(Ax[0]), 0, &numext::real_ref(X[0]), 0, &numext::real_ref(B[0]), | 
|  | 0, Numeric, Control, Info); | 
|  | } | 
|  |  | 
|  | // Get Lunz | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) { | 
|  | return umfpack_di_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, | 
|  | std::complex<double>) { | 
|  | return umfpack_zi_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, | 
|  | SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, double) { | 
|  | return umfpack_dl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_get_lunz(SuiteSparse_long *lnz, SuiteSparse_long *unz, SuiteSparse_long *n_row, | 
|  | SuiteSparse_long *n_col, SuiteSparse_long *nz_udiag, void *Numeric, | 
|  | std::complex<double>) { | 
|  | return umfpack_zl_get_lunz(lnz, unz, n_row, n_col, nz_udiag, Numeric); | 
|  | } | 
|  |  | 
|  | // Get Numeric | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], int P[], int Q[], | 
|  | double Dx[], int *do_recip, double Rs[], void *Numeric) { | 
|  | return umfpack_di_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], | 
|  | std::complex<double> Ux[], int P[], int Q[], std::complex<double> Dx[], int *do_recip, | 
|  | double Rs[], void *Numeric) { | 
|  | double &lx0_real = numext::real_ref(Lx[0]); | 
|  | double &ux0_real = numext::real_ref(Ux[0]); | 
|  | double &dx0_real = numext::real_ref(Dx[0]); | 
|  | return umfpack_zi_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0, | 
|  | 0, do_recip, Rs, Numeric); | 
|  | } | 
|  | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], double Lx[], | 
|  | SuiteSparse_long Up[], SuiteSparse_long Ui[], double Ux[], | 
|  | SuiteSparse_long P[], SuiteSparse_long Q[], double Dx[], | 
|  | SuiteSparse_long *do_recip, double Rs[], void *Numeric) { | 
|  | return umfpack_dl_get_numeric(Lp, Lj, Lx, Up, Ui, Ux, P, Q, Dx, do_recip, Rs, Numeric); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_get_numeric(SuiteSparse_long Lp[], SuiteSparse_long Lj[], std::complex<double> Lx[], | 
|  | SuiteSparse_long Up[], SuiteSparse_long Ui[], std::complex<double> Ux[], | 
|  | SuiteSparse_long P[], SuiteSparse_long Q[], std::complex<double> Dx[], | 
|  | SuiteSparse_long *do_recip, double Rs[], void *Numeric) { | 
|  | double &lx0_real = numext::real_ref(Lx[0]); | 
|  | double &ux0_real = numext::real_ref(Ux[0]); | 
|  | double &dx0_real = numext::real_ref(Dx[0]); | 
|  | return umfpack_zl_get_numeric(Lp, Lj, Lx ? &lx0_real : 0, 0, Up, Ui, Ux ? &ux0_real : 0, 0, P, Q, Dx ? &dx0_real : 0, | 
|  | 0, do_recip, Rs, Numeric); | 
|  | } | 
|  |  | 
|  | // Get Determinant | 
|  | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info[UMFPACK_INFO], int) { | 
|  | return umfpack_di_get_determinant(Mx, Ex, NumericHandle, User_Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, | 
|  | double User_Info[UMFPACK_INFO], int) { | 
|  | double &mx_real = numext::real_ref(*Mx); | 
|  | return umfpack_zi_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, | 
|  | double User_Info[UMFPACK_INFO], SuiteSparse_long) { | 
|  | return umfpack_dl_get_determinant(Mx, Ex, NumericHandle, User_Info); | 
|  | } | 
|  |  | 
|  | inline SuiteSparse_long umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, | 
|  | double User_Info[UMFPACK_INFO], SuiteSparse_long) { | 
|  | double &mx_real = numext::real_ref(*Mx); | 
|  | return umfpack_zl_get_determinant(&mx_real, 0, Ex, NumericHandle, User_Info); | 
|  | } | 
|  |  | 
|  | /** \ingroup UmfPackSupport_Module | 
|  | * \brief A sparse LU factorization and solver based on UmfPack | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a LU factorization | 
|  | * using the UmfPack library. The sparse matrix A must be squared and full rank. | 
|  | * The vectors or matrices X and B can be either dense or sparse. | 
|  | * | 
|  | * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
|  | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
|  | * \tparam MatrixType_ the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * | 
|  | * \implsparsesolverconcept | 
|  | * | 
|  | * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
|  | */ | 
|  | template <typename MatrixType_> | 
|  | class UmfPackLU : public SparseSolverBase<UmfPackLU<MatrixType_> > { | 
|  | protected: | 
|  | typedef SparseSolverBase<UmfPackLU<MatrixType_> > Base; | 
|  | using Base::m_isInitialized; | 
|  |  | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  | typedef MatrixType_ MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<Scalar, Dynamic, 1> Vector; | 
|  | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
|  | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
|  | typedef SparseMatrix<Scalar> LUMatrixType; | 
|  | typedef SparseMatrix<Scalar, ColMajor, StorageIndex> UmfpackMatrixType; | 
|  | typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef; | 
|  | enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime }; | 
|  |  | 
|  | public: | 
|  | typedef Array<double, UMFPACK_CONTROL, 1> UmfpackControl; | 
|  | typedef Array<double, UMFPACK_INFO, 1> UmfpackInfo; | 
|  |  | 
|  | UmfPackLU() : m_dummy(0, 0), mp_matrix(m_dummy) { init(); } | 
|  |  | 
|  | template <typename InputMatrixType> | 
|  | explicit UmfPackLU(const InputMatrixType &matrix) : mp_matrix(matrix) { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~UmfPackLU() { | 
|  | if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
|  | if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return mp_matrix.rows(); } | 
|  | inline Index cols() const { return mp_matrix.cols(); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was successful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | inline const LUMatrixType &matrixL() const { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_l; | 
|  | } | 
|  |  | 
|  | inline const LUMatrixType &matrixU() const { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_u; | 
|  | } | 
|  |  | 
|  | inline const IntColVectorType &permutationP() const { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | inline const IntRowVectorType &permutationQ() const { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_q; | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix | 
|  | *  Note that the matrix should be column-major, and in compressed format for best performance. | 
|  | *  \sa SparseMatrix::makeCompressed(). | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void compute(const InputMatrixType &matrix) { | 
|  | if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
|  | if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
|  | grab(matrix.derived()); | 
|  | analyzePattern_impl(); | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize(), compute() | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void analyzePattern(const InputMatrixType &matrix) { | 
|  | if (m_symbolic) umfpack_free_symbolic(&m_symbolic, Scalar(), StorageIndex()); | 
|  | if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | analyzePattern_impl(); | 
|  | } | 
|  |  | 
|  | /** Provides the return status code returned by UmfPack during the numeric | 
|  | * factorization. | 
|  | * | 
|  | * \sa factorize(), compute() | 
|  | */ | 
|  | inline int umfpackFactorizeReturncode() const { | 
|  | eigen_assert(m_numeric && "UmfPackLU: you must first call factorize()"); | 
|  | return m_fact_errorCode; | 
|  | } | 
|  |  | 
|  | /** Provides access to the control settings array used by UmfPack. | 
|  | * | 
|  | * If this array contains NaN's, the default values are used. | 
|  | * | 
|  | * See UMFPACK documentation for details. | 
|  | */ | 
|  | inline const UmfpackControl &umfpackControl() const { return m_control; } | 
|  |  | 
|  | /** Provides access to the control settings array used by UmfPack. | 
|  | * | 
|  | * If this array contains NaN's, the default values are used. | 
|  | * | 
|  | * See UMFPACK documentation for details. | 
|  | */ | 
|  | inline UmfpackControl &umfpackControl() { return m_control; } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. | 
|  | * | 
|  | * \sa analyzePattern(), compute() | 
|  | */ | 
|  | template <typename InputMatrixType> | 
|  | void factorize(const InputMatrixType &matrix) { | 
|  | eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
|  | if (m_numeric) umfpack_free_numeric(&m_numeric, Scalar(), StorageIndex()); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** Prints the current UmfPack control settings. | 
|  | * | 
|  | * \sa umfpackControl() | 
|  | */ | 
|  | void printUmfpackControl() { umfpack_report_control(m_control.data(), Scalar(), StorageIndex()); } | 
|  |  | 
|  | /** Prints statistics collected by UmfPack. | 
|  | * | 
|  | * \sa analyzePattern(), compute() | 
|  | */ | 
|  | void printUmfpackInfo() { | 
|  | eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
|  | umfpack_report_info(m_control.data(), m_umfpackInfo.data(), Scalar(), StorageIndex()); | 
|  | } | 
|  |  | 
|  | /** Prints the status of the previous factorization operation performed by UmfPack (symbolic or numerical | 
|  | * factorization). | 
|  | * | 
|  | * \sa analyzePattern(), compute() | 
|  | */ | 
|  | void printUmfpackStatus() { | 
|  | eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
|  | umfpack_report_status(m_control.data(), m_fact_errorCode, Scalar(), StorageIndex()); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template <typename BDerived, typename XDerived> | 
|  | bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | 
|  |  | 
|  | Scalar determinant() const; | 
|  |  | 
|  | void extractData() const; | 
|  |  | 
|  | protected: | 
|  | void init() { | 
|  | m_info = InvalidInput; | 
|  | m_isInitialized = false; | 
|  | m_numeric = 0; | 
|  | m_symbolic = 0; | 
|  | m_extractedDataAreDirty = true; | 
|  |  | 
|  | umfpack_defaults(m_control.data(), Scalar(), StorageIndex()); | 
|  | } | 
|  |  | 
|  | void analyzePattern_impl() { | 
|  | m_fact_errorCode = umfpack_symbolic(internal::convert_index<StorageIndex>(mp_matrix.rows()), | 
|  | internal::convert_index<StorageIndex>(mp_matrix.cols()), | 
|  | mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
|  | &m_symbolic, m_control.data(), m_umfpackInfo.data()); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_info = m_fact_errorCode ? InvalidInput : Success; | 
|  | m_analysisIsOk = true; | 
|  | m_factorizationIsOk = false; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | void factorize_impl() { | 
|  | m_fact_errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
|  | m_symbolic, &m_numeric, m_control.data(), m_umfpackInfo.data()); | 
|  |  | 
|  | m_info = m_fact_errorCode == UMFPACK_OK ? Success : NumericalIssue; | 
|  | m_factorizationIsOk = true; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | template <typename MatrixDerived> | 
|  | void grab(const EigenBase<MatrixDerived> &A) { | 
|  | internal::destroy_at(&mp_matrix); | 
|  | internal::construct_at(&mp_matrix, A.derived()); | 
|  | } | 
|  |  | 
|  | void grab(const UmfpackMatrixRef &A) { | 
|  | if (&(A.derived()) != &mp_matrix) { | 
|  | internal::destroy_at(&mp_matrix); | 
|  | internal::construct_at(&mp_matrix, A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // cached data to reduce reallocation, etc. | 
|  | mutable LUMatrixType m_l; | 
|  | StorageIndex m_fact_errorCode; | 
|  | UmfpackControl m_control; | 
|  | mutable UmfpackInfo m_umfpackInfo; | 
|  |  | 
|  | mutable LUMatrixType m_u; | 
|  | mutable IntColVectorType m_p; | 
|  | mutable IntRowVectorType m_q; | 
|  |  | 
|  | UmfpackMatrixType m_dummy; | 
|  | UmfpackMatrixRef mp_matrix; | 
|  |  | 
|  | void *m_numeric; | 
|  | void *m_symbolic; | 
|  |  | 
|  | mutable ComputationInfo m_info; | 
|  | int m_factorizationIsOk; | 
|  | int m_analysisIsOk; | 
|  | mutable bool m_extractedDataAreDirty; | 
|  |  | 
|  | private: | 
|  | UmfPackLU(const UmfPackLU &) {} | 
|  | }; | 
|  |  | 
|  | template <typename MatrixType> | 
|  | void UmfPackLU<MatrixType>::extractData() const { | 
|  | if (m_extractedDataAreDirty) { | 
|  | // get size of the data | 
|  | StorageIndex lnz, unz, rows, cols, nz_udiag; | 
|  | umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
|  |  | 
|  | // allocate data | 
|  | m_l.resize(rows, (std::min)(rows, cols)); | 
|  | m_l.resizeNonZeros(lnz); | 
|  |  | 
|  | m_u.resize((std::min)(rows, cols), cols); | 
|  | m_u.resizeNonZeros(unz); | 
|  |  | 
|  | m_p.resize(rows); | 
|  | m_q.resize(cols); | 
|  |  | 
|  | // extract | 
|  | umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), m_u.outerIndexPtr(), | 
|  | m_u.innerIndexPtr(), m_u.valuePtr(), m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
|  |  | 
|  | m_extractedDataAreDirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const { | 
|  | Scalar det; | 
|  | umfpack_get_determinant(&det, 0, m_numeric, 0, StorageIndex()); | 
|  | return det; | 
|  | } | 
|  |  | 
|  | template <typename MatrixType> | 
|  | template <typename BDerived, typename XDerived> | 
|  | bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const { | 
|  | Index rhsCols = b.cols(); | 
|  | eigen_assert((BDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major rhs yet"); | 
|  | eigen_assert((XDerived::Flags & RowMajorBit) == 0 && "UmfPackLU backend does not support non col-major result yet"); | 
|  | eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); | 
|  |  | 
|  | Scalar *x_ptr = 0; | 
|  | Matrix<Scalar, Dynamic, 1> x_tmp; | 
|  | if (x.innerStride() != 1) { | 
|  | x_tmp.resize(x.rows()); | 
|  | x_ptr = x_tmp.data(); | 
|  | } | 
|  | for (int j = 0; j < rhsCols; ++j) { | 
|  | if (x.innerStride() == 1) x_ptr = &x.col(j).coeffRef(0); | 
|  | StorageIndex errorCode = | 
|  | umfpack_solve(UMFPACK_A, mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), x_ptr, | 
|  | &b.const_cast_derived().col(j).coeffRef(0), m_numeric, m_control.data(), m_umfpackInfo.data()); | 
|  | if (x.innerStride() != 1) x.col(j) = x_tmp; | 
|  | if (errorCode != 0) return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // end namespace Eigen | 
|  |  | 
|  | #endif  // EIGEN_UMFPACKSUPPORT_H |