|  | // Small bench routine for Eigen available in Eigen | 
|  | // (C) Desire NUENTSA WAKAM, INRIA | 
|  |  | 
|  | #include <iostream> | 
|  | #include <fstream> | 
|  | #include <iomanip> | 
|  | #include <Eigen/Jacobi> | 
|  | #include <Eigen/Householder> | 
|  | #include <Eigen/IterativeLinearSolvers> | 
|  | #include <Eigen/LU> | 
|  | #include <unsupported/Eigen/SparseExtra> | 
|  | // #include <Eigen/SparseLU> | 
|  | #include <Eigen/SuperLUSupport> | 
|  | // #include <unsupported/Eigen/src/IterativeSolvers/Scaling.h> | 
|  | #include <bench/BenchTimer.h> | 
|  | #include <unsupported/Eigen/IterativeSolvers> | 
|  | using namespace std; | 
|  | using namespace Eigen; | 
|  |  | 
|  | int main(int argc, char **args) { | 
|  | SparseMatrix<double, ColMajor> A; | 
|  | typedef SparseMatrix<double, ColMajor>::Index Index; | 
|  | typedef Matrix<double, Dynamic, Dynamic> DenseMatrix; | 
|  | typedef Matrix<double, Dynamic, 1> DenseRhs; | 
|  | VectorXd b, x, tmp; | 
|  | BenchTimer timer, totaltime; | 
|  | // SparseLU<SparseMatrix<double, ColMajor> >   solver; | 
|  | //   SuperLU<SparseMatrix<double, ColMajor> >   solver; | 
|  | ConjugateGradient<SparseMatrix<double, ColMajor>, Lower, IncompleteCholesky<double, Lower> > solver; | 
|  | ifstream matrix_file; | 
|  | string line; | 
|  | int n; | 
|  | // Set parameters | 
|  | //   solver.iparm(IPARM_THREAD_NBR) = 4; | 
|  | /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */ | 
|  | if (argc < 2) assert(false && "please, give the matrix market file "); | 
|  |  | 
|  | timer.start(); | 
|  | totaltime.start(); | 
|  | loadMarket(A, args[1]); | 
|  | cout << "End charging matrix " << endl; | 
|  | bool iscomplex = false, isvector = false; | 
|  | int sym; | 
|  | getMarketHeader(args[1], sym, iscomplex, isvector); | 
|  | if (iscomplex) { | 
|  | cout << " Not for complex matrices \n"; | 
|  | return -1; | 
|  | } | 
|  | if (isvector) { | 
|  | cout << "The provided file is not a matrix file\n"; | 
|  | return -1; | 
|  | } | 
|  | if (sym != 0) {  // symmetric matrices, only the lower part is stored | 
|  | SparseMatrix<double, ColMajor> temp; | 
|  | temp = A; | 
|  | A = temp.selfadjointView<Lower>(); | 
|  | } | 
|  | timer.stop(); | 
|  |  | 
|  | n = A.cols(); | 
|  | // ====== TESTS FOR SPARSE TUTORIAL ====== | 
|  | //   cout<< "OuterSize " << A.outerSize() << " inner " << A.innerSize() << endl; | 
|  | //   SparseMatrix<double, RowMajor> mat1(A); | 
|  | //   SparseMatrix<double, RowMajor> mat2; | 
|  | //   cout << " norm of A " << mat1.norm() << endl; ; | 
|  | //   PermutationMatrix<Dynamic, Dynamic, int> perm(n); | 
|  | //   perm.resize(n,1); | 
|  | //   perm.indices().setLinSpaced(n, 0, n-1); | 
|  | //   mat2 = perm * mat1; | 
|  | //   mat.subrows(); | 
|  | //   mat2.resize(n,n); | 
|  | //   mat2.reserve(10); | 
|  | //   mat2.setConstant(); | 
|  | //   std::cout<< "NORM " << mat1.squaredNorm()<< endl; | 
|  |  | 
|  | cout << "Time to load the matrix " << timer.value() << endl; | 
|  | /* Fill the right hand side */ | 
|  |  | 
|  | //   solver.set_restart(374); | 
|  | if (argc > 2) | 
|  | loadMarketVector(b, args[2]); | 
|  | else { | 
|  | b.resize(n); | 
|  | tmp.resize(n); | 
|  | //       tmp.setRandom(); | 
|  | for (int i = 0; i < n; i++) tmp(i) = i; | 
|  | b = A * tmp; | 
|  | } | 
|  | //   Scaling<SparseMatrix<double> > scal; | 
|  | //   scal.computeRef(A); | 
|  | //   b = scal.LeftScaling().cwiseProduct(b); | 
|  |  | 
|  | /* Compute the factorization */ | 
|  | cout << "Starting the factorization " << endl; | 
|  | timer.reset(); | 
|  | timer.start(); | 
|  | cout << "Size of Input Matrix " << b.size() << "\n\n"; | 
|  | cout << "Rows and columns " << A.rows() << " " << A.cols() << "\n"; | 
|  | solver.compute(A); | 
|  | //   solver.analyzePattern(A); | 
|  | //   solver.factorize(A); | 
|  | if (solver.info() != Success) { | 
|  | std::cout << "The solver failed \n"; | 
|  | return -1; | 
|  | } | 
|  | timer.stop(); | 
|  | float time_comp = timer.value(); | 
|  | cout << " Compute Time " << time_comp << endl; | 
|  |  | 
|  | timer.reset(); | 
|  | timer.start(); | 
|  | x = solver.solve(b); | 
|  | //   x = scal.RightScaling().cwiseProduct(x); | 
|  | timer.stop(); | 
|  | float time_solve = timer.value(); | 
|  | cout << " Time to solve " << time_solve << endl; | 
|  |  | 
|  | /* Check the accuracy */ | 
|  | VectorXd tmp2 = b - A * x; | 
|  | double tempNorm = tmp2.norm() / b.norm(); | 
|  | cout << "Relative norm of the computed solution : " << tempNorm << "\n"; | 
|  | //   cout << "Iterations : " << solver.iterations() << "\n"; | 
|  |  | 
|  | totaltime.stop(); | 
|  | cout << "Total time " << totaltime.value() << "\n"; | 
|  | //  std::cout<<x.transpose()<<"\n"; | 
|  |  | 
|  | return 0; | 
|  | } |