| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <Eigen/Eigenvalues> | 
 | #include <Eigen/LU> | 
 |  | 
 | template <typename MatrixType> | 
 | bool find_pivot(typename MatrixType::Scalar tol, MatrixType& diffs, Index col = 0) { | 
 |   bool match = diffs.diagonal().sum() <= tol; | 
 |   if (match || col == diffs.cols()) { | 
 |     return match; | 
 |   } else { | 
 |     Index n = diffs.cols(); | 
 |     std::vector<std::pair<Index, Index> > transpositions; | 
 |     for (Index i = col; i < n; ++i) { | 
 |       Index best_index(0); | 
 |       if (diffs.col(col).segment(col, n - i).minCoeff(&best_index) > tol) break; | 
 |  | 
 |       best_index += col; | 
 |  | 
 |       diffs.row(col).swap(diffs.row(best_index)); | 
 |       if (find_pivot(tol, diffs, col + 1)) return true; | 
 |       diffs.row(col).swap(diffs.row(best_index)); | 
 |  | 
 |       // move current pivot to the end | 
 |       diffs.row(n - (i - col) - 1).swap(diffs.row(best_index)); | 
 |       transpositions.push_back(std::pair<Index, Index>(n - (i - col) - 1, best_index)); | 
 |     } | 
 |     // restore | 
 |     for (Index k = transpositions.size() - 1; k >= 0; --k) | 
 |       diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /* Check that two column vectors are approximately equal up to permutations. | 
 |  * Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(), | 
 |  * however this strategy is numerically inaccurate because of numerical cancellation issues. | 
 |  */ | 
 | template <typename VectorType> | 
 | void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   VERIFY(vec1.cols() == 1); | 
 |   VERIFY(vec2.cols() == 1); | 
 |   VERIFY(vec1.rows() == vec2.rows()); | 
 |  | 
 |   Index n = vec1.rows(); | 
 |   RealScalar tol = test_precision<RealScalar>() * test_precision<RealScalar>() * | 
 |                    numext::maxi(vec1.squaredNorm(), vec2.squaredNorm()); | 
 |   Matrix<RealScalar, Dynamic, Dynamic> diffs = | 
 |       (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); | 
 |  | 
 |   VERIFY(find_pivot(tol, diffs)); | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void eigensolver(const MatrixType& m) { | 
 |   /* this test covers the following files: | 
 |      ComplexEigenSolver.h, and indirectly ComplexSchur.h | 
 |   */ | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows, cols); | 
 |   MatrixType symmA = a.adjoint() * a; | 
 |  | 
 |   ComplexEigenSolver<MatrixType> ei0(symmA); | 
 |   VERIFY_IS_EQUAL(ei0.info(), Success); | 
 |   VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); | 
 |  | 
 |   ComplexEigenSolver<MatrixType> ei1(a); | 
 |   VERIFY_IS_EQUAL(ei1.info(), Success); | 
 |   VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | 
 |   // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus | 
 |   // another algorithm so results may differ slightly | 
 |   verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); | 
 |  | 
 |   ComplexEigenSolver<MatrixType> ei2; | 
 |   ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | 
 |   VERIFY_IS_EQUAL(ei2.info(), Success); | 
 |   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | 
 |   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | 
 |   if (rows > 2) { | 
 |     ei2.setMaxIterations(1).compute(a); | 
 |     VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | 
 |     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | 
 |   } | 
 |  | 
 |   ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); | 
 |   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | 
 |   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | 
 |  | 
 |   // Regression test for issue #66 | 
 |   MatrixType z = MatrixType::Zero(rows, cols); | 
 |   ComplexEigenSolver<MatrixType> eiz(z); | 
 |   VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); | 
 |  | 
 |   MatrixType id = MatrixType::Identity(rows, cols); | 
 |   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | 
 |  | 
 |   if (rows > 1 && rows < 20) { | 
 |     // Test matrix with NaN | 
 |     a(0, 0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
 |     ComplexEigenSolver<MatrixType> eiNaN(a); | 
 |     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | 
 |   } | 
 |  | 
 |   // regression test for bug 1098 | 
 |   { | 
 |     ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); | 
 |     eig.compute(a.adjoint() * a); | 
 |   } | 
 |  | 
 |   // regression test for bug 478 | 
 |   { | 
 |     a.setZero(); | 
 |     ComplexEigenSolver<MatrixType> ei3(a); | 
 |     VERIFY_IS_EQUAL(ei3.info(), Success); | 
 |     VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(), RealScalar(1)); | 
 |     VERIFY((ei3.eigenvectors().transpose() * ei3.eigenvectors().transpose()).eval().isIdentity()); | 
 |   } | 
 | } | 
 |  | 
 | template <typename MatrixType> | 
 | void eigensolver_verify_assert(const MatrixType& m) { | 
 |   ComplexEigenSolver<MatrixType> eig; | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
 |  | 
 |   MatrixType a = MatrixType::Random(m.rows(), m.cols()); | 
 |   eig.compute(a, false); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(eigensolver_complex) { | 
 |   int s = 0; | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1(eigensolver(Matrix4cf())); | 
 |     s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); | 
 |     CALL_SUBTEST_2(eigensolver(MatrixXcd(s, s))); | 
 |     CALL_SUBTEST_3(eigensolver(Matrix<std::complex<float>, 1, 1>())); | 
 |     CALL_SUBTEST_4(eigensolver(Matrix3f())); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |   } | 
 |   CALL_SUBTEST_1(eigensolver_verify_assert(Matrix4cf())); | 
 |   s = internal::random<int>(1, EIGEN_TEST_MAX_SIZE / 4); | 
 |   CALL_SUBTEST_2(eigensolver_verify_assert(MatrixXcd(s, s))); | 
 |   CALL_SUBTEST_3(eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>())); | 
 |   CALL_SUBTEST_4(eigensolver_verify_assert(Matrix3f())); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); | 
 |  | 
 |   TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 | } |