| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_AUTODIFF_JACOBIAN_H | 
 | #define EIGEN_AUTODIFF_JACOBIAN_H | 
 |  | 
 | // IWYU pragma: private | 
 | #include "./InternalHeaderCheck.h" | 
 |  | 
 | namespace Eigen { | 
 |  | 
 | template <typename Functor> | 
 | class AutoDiffJacobian : public Functor { | 
 |  public: | 
 |   AutoDiffJacobian() : Functor() {} | 
 |   AutoDiffJacobian(const Functor& f) : Functor(f) {} | 
 |  | 
 |   // forward constructors | 
 |   template <typename... T> | 
 |   AutoDiffJacobian(const T&... Values) : Functor(Values...) {} | 
 |  | 
 |   typedef typename Functor::InputType InputType; | 
 |   typedef typename Functor::ValueType ValueType; | 
 |   typedef typename ValueType::Scalar Scalar; | 
 |  | 
 |   enum { InputsAtCompileTime = InputType::RowsAtCompileTime, ValuesAtCompileTime = ValueType::RowsAtCompileTime }; | 
 |  | 
 |   typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; | 
 |   typedef typename JacobianType::Index Index; | 
 |  | 
 |   typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; | 
 |   typedef AutoDiffScalar<DerivativeType> ActiveScalar; | 
 |  | 
 |   typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; | 
 |   typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; | 
 |  | 
 |   // Some compilers don't accept variadic parameters after a default parameter, | 
 |   // i.e., we can't just write _jac=0 but we need to overload operator(): | 
 |   EIGEN_STRONG_INLINE void operator()(const InputType& x, ValueType* v) const { this->operator()(x, v, 0); } | 
 |   template <typename... ParamsType> | 
 |   void operator()(const InputType& x, ValueType* v, JacobianType* _jac, const ParamsType&... Params) const { | 
 |     eigen_assert(v != 0); | 
 |  | 
 |     if (!_jac) { | 
 |       Functor::operator()(x, v, Params...); | 
 |       return; | 
 |     } | 
 |  | 
 |     JacobianType& jac = *_jac; | 
 |  | 
 |     ActiveInput ax = x.template cast<ActiveScalar>(); | 
 |     ActiveValue av(jac.rows()); | 
 |  | 
 |     if (InputsAtCompileTime == Dynamic) | 
 |       for (Index j = 0; j < jac.rows(); j++) av[j].derivatives().resize(x.rows()); | 
 |  | 
 |     for (Index i = 0; i < jac.cols(); i++) ax[i].derivatives() = DerivativeType::Unit(x.rows(), i); | 
 |  | 
 |     Functor::operator()(ax, &av, Params...); | 
 |  | 
 |     for (Index i = 0; i < jac.rows(); i++) { | 
 |       (*v)[i] = av[i].value(); | 
 |       jac.row(i) = av[i].derivatives(); | 
 |     } | 
 |   } | 
 | }; | 
 |  | 
 | }  // namespace Eigen | 
 |  | 
 | #endif  // EIGEN_AUTODIFF_JACOBIAN_H |