| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2011 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/MatrixFunctions> | 
 |  | 
 | // For complex matrices, any matrix is fine. | 
 | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | 
 | struct processTriangularMatrix { | 
 |   static void run(MatrixType&, MatrixType&, const MatrixType&) {} | 
 | }; | 
 |  | 
 | // For real matrices, make sure none of the eigenvalues are negative. | 
 | template <typename MatrixType> | 
 | struct processTriangularMatrix<MatrixType, 0> { | 
 |   static void run(MatrixType& m, MatrixType& T, const MatrixType& U) { | 
 |     const Index size = m.cols(); | 
 |  | 
 |     for (Index i = 0; i < size; ++i) { | 
 |       if (i == size - 1 || T.coeff(i + 1, i) == 0) | 
 |         T.coeffRef(i, i) = std::abs(T.coeff(i, i)); | 
 |       else | 
 |         ++i; | 
 |     } | 
 |     m = U * T * U.transpose(); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> | 
 | struct generateTestMatrix; | 
 |  | 
 | template <typename MatrixType> | 
 | struct generateTestMatrix<MatrixType, 0> { | 
 |   static void run(MatrixType& result, typename MatrixType::Index size) { | 
 |     result = MatrixType::Random(size, size); | 
 |     RealSchur<MatrixType> schur(result); | 
 |     MatrixType T = schur.matrixT(); | 
 |     processTriangularMatrix<MatrixType>::run(result, T, schur.matrixU()); | 
 |   } | 
 | }; | 
 |  | 
 | template <typename MatrixType> | 
 | struct generateTestMatrix<MatrixType, 1> { | 
 |   static void run(MatrixType& result, typename MatrixType::Index size) { result = MatrixType::Random(size, size); } | 
 | }; | 
 |  | 
 | template <typename Derived, typename OtherDerived> | 
 | typename Derived::RealScalar relerr(const MatrixBase<Derived>& A, const MatrixBase<OtherDerived>& B) { | 
 |   return std::sqrt((A - B).cwiseAbs2().sum() / (std::min)(A.cwiseAbs2().sum(), B.cwiseAbs2().sum())); | 
 | } |