| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <unsupported/Eigen/Polynomials> | 
 | #include <iostream> | 
 |  | 
 | using namespace std; | 
 |  | 
 | namespace Eigen { | 
 | namespace internal { | 
 | template <int Size> | 
 | struct increment_if_fixed_size { | 
 |   enum { ret = (Size == Dynamic) ? Dynamic : Size + 1 }; | 
 | }; | 
 | }  // namespace internal | 
 | }  // namespace Eigen | 
 |  | 
 | template <typename Scalar_, int Deg_> | 
 | void realRoots_to_monicPolynomial_test(int deg) { | 
 |   typedef internal::increment_if_fixed_size<Deg_> Dim; | 
 |   typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType; | 
 |   typedef Matrix<Scalar_, Deg_, 1> EvalRootsType; | 
 |  | 
 |   PolynomialType pols(deg + 1); | 
 |   EvalRootsType roots = EvalRootsType::Random(deg); | 
 |   roots_to_monicPolynomial(roots, pols); | 
 |  | 
 |   EvalRootsType evr(deg); | 
 |   for (int i = 0; i < roots.size(); ++i) { | 
 |     evr[i] = std::abs(poly_eval(pols, roots[i])); | 
 |   } | 
 |  | 
 |   bool evalToZero = evr.isZero(test_precision<Scalar_>()); | 
 |   if (!evalToZero) { | 
 |     cerr << evr.transpose() << endl; | 
 |   } | 
 |   VERIFY(evalToZero); | 
 | } | 
 |  | 
 | template <typename Scalar_> | 
 | void realRoots_to_monicPolynomial_scalar() { | 
 |   CALL_SUBTEST_2((realRoots_to_monicPolynomial_test<Scalar_, 2>(2))); | 
 |   CALL_SUBTEST_3((realRoots_to_monicPolynomial_test<Scalar_, 3>(3))); | 
 |   CALL_SUBTEST_4((realRoots_to_monicPolynomial_test<Scalar_, 4>(4))); | 
 |   CALL_SUBTEST_5((realRoots_to_monicPolynomial_test<Scalar_, 5>(5))); | 
 |   CALL_SUBTEST_6((realRoots_to_monicPolynomial_test<Scalar_, 6>(6))); | 
 |   CALL_SUBTEST_7((realRoots_to_monicPolynomial_test<Scalar_, 7>(7))); | 
 |   CALL_SUBTEST_8((realRoots_to_monicPolynomial_test<Scalar_, 17>(17))); | 
 |  | 
 |   CALL_SUBTEST_9((realRoots_to_monicPolynomial_test<Scalar_, Dynamic>(internal::random<int>(18, 26)))); | 
 | } | 
 |  | 
 | template <typename Scalar_, int Deg_> | 
 | void CauchyBounds(int deg) { | 
 |   typedef internal::increment_if_fixed_size<Deg_> Dim; | 
 |   typedef Matrix<Scalar_, Dim::ret, 1> PolynomialType; | 
 |   typedef Matrix<Scalar_, Deg_, 1> EvalRootsType; | 
 |  | 
 |   PolynomialType pols(deg + 1); | 
 |   EvalRootsType roots = EvalRootsType::Random(deg); | 
 |   roots_to_monicPolynomial(roots, pols); | 
 |   Scalar_ M = cauchy_max_bound(pols); | 
 |   Scalar_ m = cauchy_min_bound(pols); | 
 |   Scalar_ Max = roots.array().abs().maxCoeff(); | 
 |   Scalar_ min = roots.array().abs().minCoeff(); | 
 |   bool eval = (M >= Max) && (m <= min); | 
 |   if (!eval) { | 
 |     cerr << "Roots: " << roots << endl; | 
 |     cerr << "Bounds: (" << m << ", " << M << ")" << endl; | 
 |     cerr << "Min,Max: (" << min << ", " << Max << ")" << endl; | 
 |   } | 
 |   VERIFY(eval); | 
 | } | 
 |  | 
 | template <typename Scalar_> | 
 | void CauchyBounds_scalar() { | 
 |   CALL_SUBTEST_2((CauchyBounds<Scalar_, 2>(2))); | 
 |   CALL_SUBTEST_3((CauchyBounds<Scalar_, 3>(3))); | 
 |   CALL_SUBTEST_4((CauchyBounds<Scalar_, 4>(4))); | 
 |   CALL_SUBTEST_5((CauchyBounds<Scalar_, 5>(5))); | 
 |   CALL_SUBTEST_6((CauchyBounds<Scalar_, 6>(6))); | 
 |   CALL_SUBTEST_7((CauchyBounds<Scalar_, 7>(7))); | 
 |   CALL_SUBTEST_8((CauchyBounds<Scalar_, 17>(17))); | 
 |  | 
 |   CALL_SUBTEST_9((CauchyBounds<Scalar_, Dynamic>(internal::random<int>(18, 26)))); | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(polynomialutils) { | 
 |   for (int i = 0; i < g_repeat; i++) { | 
 |     realRoots_to_monicPolynomial_scalar<double>(); | 
 |     realRoots_to_monicPolynomial_scalar<float>(); | 
 |     CauchyBounds_scalar<double>(); | 
 |     CauchyBounds_scalar<float>(); | 
 |   } | 
 | } |