| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | template<typename T> | 
 | Array<T,4,1> four_denorms(); | 
 |  | 
 | template<> | 
 | Array4f four_denorms() { return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f); } | 
 | template<> | 
 | Array4d four_denorms() { return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324); } | 
 | template<typename T> | 
 | Array<T,4,1> four_denorms() { return four_denorms<double>().cast<T>(); } | 
 |  | 
 | template<typename MatrixType> | 
 | void svd_fill_random(MatrixType &m, int Option = 0) | 
 | { | 
 |   using std::pow; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   Index diagSize = (std::min)(m.rows(), m.cols()); | 
 |   RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4; | 
 |   s = internal::random<RealScalar>(1,s); | 
 |   Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(diagSize); | 
 |   for(Index k=0; k<diagSize; ++k) | 
 |     d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s)); | 
 |  | 
 |   bool dup     = internal::random<int>(0,10) < 3; | 
 |   bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors | 
 |    | 
 |   // duplicate some singular values | 
 |   if(dup) | 
 |   { | 
 |     Index n = internal::random<Index>(0,d.size()-1); | 
 |     for(Index i=0; i<n; ++i) | 
 |       d(internal::random<Index>(0,d.size()-1)) = d(internal::random<Index>(0,d.size()-1)); | 
 |   } | 
 |    | 
 |   Matrix<Scalar,Dynamic,Dynamic> U(m.rows(),diagSize); | 
 |   Matrix<Scalar,Dynamic,Dynamic> VT(diagSize,m.cols()); | 
 |   if(unit_uv) | 
 |   { | 
 |     // in very rare cases let's try with a pure diagonal matrix | 
 |     if(internal::random<int>(0,10) < 1) | 
 |     { | 
 |       U.setIdentity(); | 
 |       VT.setIdentity(); | 
 |     } | 
 |     else | 
 |     { | 
 |       createRandomPIMatrixOfRank(diagSize,U.rows(), U.cols(), U); | 
 |       createRandomPIMatrixOfRank(diagSize,VT.rows(), VT.cols(), VT); | 
 |     } | 
 |   } | 
 |   else | 
 |   { | 
 |     U.setRandom(); | 
 |     VT.setRandom(); | 
 |   } | 
 |    | 
 |   Matrix<Scalar,Dynamic,1> samples(9); | 
 |   samples << 0, four_denorms<RealScalar>(), | 
 |             -RealScalar(1)/NumTraits<RealScalar>::highest(), RealScalar(1)/NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(), pow((std::numeric_limits<RealScalar>::min)(),0.8); | 
 |    | 
 |   if(Option==Symmetric) | 
 |   { | 
 |     m = U * d.asDiagonal() * U.transpose(); | 
 |      | 
 |     // randomly nullify some rows/columns | 
 |     { | 
 |       Index count = internal::random<Index>(-diagSize,diagSize); | 
 |       for(Index k=0; k<count; ++k) | 
 |       { | 
 |         Index i = internal::random<Index>(0,diagSize-1); | 
 |         m.row(i).setZero(); | 
 |         m.col(i).setZero(); | 
 |       } | 
 |       if(count<0) | 
 |       // (partly) cancel some coeffs | 
 |       if(!(dup && unit_uv)) | 
 |       { | 
 |          | 
 |         Index n = internal::random<Index>(0,m.size()-1); | 
 |         for(Index k=0; k<n; ++k) | 
 |         { | 
 |           Index i = internal::random<Index>(0,m.rows()-1); | 
 |           Index j = internal::random<Index>(0,m.cols()-1); | 
 |           m(j,i) = m(i,j) = samples(internal::random<Index>(0,samples.size()-1)); | 
 |           if(NumTraits<Scalar>::IsComplex) | 
 |             *(&numext::real_ref(m(j,i))+1) = *(&numext::real_ref(m(i,j))+1) = samples.real()(internal::random<Index>(0,samples.size()-1)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |   else | 
 |   { | 
 |     m = U * d.asDiagonal() * VT; | 
 |     // (partly) cancel some coeffs | 
 |     if(!(dup && unit_uv)) | 
 |     { | 
 |       Index n = internal::random<Index>(0,m.size()-1); | 
 |       for(Index k=0; k<n; ++k) | 
 |       { | 
 |         Index i = internal::random<Index>(0,m.rows()-1); | 
 |         Index j = internal::random<Index>(0,m.cols()-1); | 
 |         m(i,j) = samples(internal::random<Index>(0,samples.size()-1)); | 
 |         if(NumTraits<Scalar>::IsComplex) | 
 |           *(&numext::real_ref(m(i,j))+1) = samples.real()(internal::random<Index>(0,samples.size()-1)); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  |