| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void matrixVisitor(const MatrixType& p) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = p.rows(); | 
 |   Index cols = p.cols(); | 
 |  | 
 |   // construct a random matrix where all coefficients are different | 
 |   MatrixType m; | 
 |   m = MatrixType::Random(rows, cols); | 
 |   for(Index i = 0; i < m.size(); i++) | 
 |     for(Index i2 = 0; i2 < i; i2++) | 
 |       while(m(i) == m(i2)) // yes, == | 
 |         m(i) = internal::random<Scalar>(); | 
 |    | 
 |   Scalar minc = Scalar(1000), maxc = Scalar(-1000); | 
 |   Index minrow=0,mincol=0,maxrow=0,maxcol=0; | 
 |   for(Index j = 0; j < cols; j++) | 
 |   for(Index i = 0; i < rows; i++) | 
 |   { | 
 |     if(m(i,j) < minc) | 
 |     { | 
 |       minc = m(i,j); | 
 |       minrow = i; | 
 |       mincol = j; | 
 |     } | 
 |     if(m(i,j) > maxc) | 
 |     { | 
 |       maxc = m(i,j); | 
 |       maxrow = i; | 
 |       maxcol = j; | 
 |     } | 
 |   } | 
 |   Index eigen_minrow, eigen_mincol, eigen_maxrow, eigen_maxcol; | 
 |   Scalar eigen_minc, eigen_maxc; | 
 |   eigen_minc = m.minCoeff(&eigen_minrow,&eigen_mincol); | 
 |   eigen_maxc = m.maxCoeff(&eigen_maxrow,&eigen_maxcol); | 
 |   VERIFY(minrow == eigen_minrow); | 
 |   VERIFY(maxrow == eigen_maxrow); | 
 |   VERIFY(mincol == eigen_mincol); | 
 |   VERIFY(maxcol == eigen_maxcol); | 
 |   VERIFY_IS_APPROX(minc, eigen_minc); | 
 |   VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |   VERIFY_IS_APPROX(minc, m.minCoeff()); | 
 |   VERIFY_IS_APPROX(maxc, m.maxCoeff()); | 
 |  | 
 |   eigen_maxc = (m.adjoint()*m).maxCoeff(&eigen_maxrow,&eigen_maxcol); | 
 |   Index maxrow2=0,maxcol2=0; | 
 |   eigen_maxc = (m.adjoint()*m).eval().maxCoeff(&maxrow2,&maxcol2); | 
 |   VERIFY(maxrow2 == eigen_maxrow); | 
 |   VERIFY(maxcol2 == eigen_maxcol); | 
 |  | 
 |   if (!NumTraits<Scalar>::IsInteger && m.size() > 2) { | 
 |     // Test NaN propagation by replacing an element with NaN. | 
 |     bool stop = false; | 
 |     for (Index j = 0; j < cols && !stop; ++j) { | 
 |       for (Index i = 0; i < rows && !stop; ++i) { | 
 |         if (!(j == mincol && i == minrow) && | 
 |             !(j == maxcol && i == maxrow)) { | 
 |           m(i,j) = NumTraits<Scalar>::quiet_NaN(); | 
 |           stop = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateNumbers>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNumbers>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(minrow == eigen_minrow); | 
 |     VERIFY(maxrow == eigen_maxrow); | 
 |     VERIFY(mincol == eigen_mincol); | 
 |     VERIFY(maxcol == eigen_maxcol); | 
 |     VERIFY_IS_APPROX(minc, eigen_minc); | 
 |     VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |     VERIFY_IS_APPROX(minc, m.template minCoeff<PropagateNumbers>()); | 
 |     VERIFY_IS_APPROX(maxc, m.template maxCoeff<PropagateNumbers>()); | 
 |  | 
 |     eigen_minc = m.template minCoeff<PropagateNaN>(&eigen_minrow, &eigen_mincol); | 
 |     eigen_maxc = m.template maxCoeff<PropagateNaN>(&eigen_maxrow, &eigen_maxcol); | 
 |     VERIFY(minrow != eigen_minrow || mincol != eigen_mincol); | 
 |     VERIFY(maxrow != eigen_maxrow || maxcol != eigen_maxcol); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |   } | 
 |  | 
 | } | 
 |  | 
 | template<typename VectorType> void vectorVisitor(const VectorType& w) | 
 | { | 
 |   typedef typename VectorType::Scalar Scalar; | 
 |  | 
 |   Index size = w.size(); | 
 |  | 
 |   // construct a random vector where all coefficients are different | 
 |   VectorType v; | 
 |   v = VectorType::Random(size); | 
 |   for(Index i = 0; i < size; i++) | 
 |     for(Index i2 = 0; i2 < i; i2++) | 
 |       while(v(i) == v(i2)) // yes, == | 
 |         v(i) = internal::random<Scalar>(); | 
 |    | 
 |   Scalar minc = v(0), maxc = v(0); | 
 |   Index minidx=0, maxidx=0; | 
 |   for(Index i = 0; i < size; i++) | 
 |   { | 
 |     if(v(i) < minc) | 
 |     { | 
 |       minc = v(i); | 
 |       minidx = i; | 
 |     } | 
 |     if(v(i) > maxc) | 
 |     { | 
 |       maxc = v(i); | 
 |       maxidx = i; | 
 |     } | 
 |   } | 
 |   Index eigen_minidx, eigen_maxidx; | 
 |   Scalar eigen_minc, eigen_maxc; | 
 |   eigen_minc = v.minCoeff(&eigen_minidx); | 
 |   eigen_maxc = v.maxCoeff(&eigen_maxidx); | 
 |   VERIFY(minidx == eigen_minidx); | 
 |   VERIFY(maxidx == eigen_maxidx); | 
 |   VERIFY_IS_APPROX(minc, eigen_minc); | 
 |   VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |   VERIFY_IS_APPROX(minc, v.minCoeff()); | 
 |   VERIFY_IS_APPROX(maxc, v.maxCoeff()); | 
 |    | 
 |   Index idx0 = internal::random<Index>(0,size-1); | 
 |   Index idx1 = eigen_minidx; | 
 |   Index idx2 = eigen_maxidx; | 
 |   VectorType v1(v), v2(v); | 
 |   v1(idx0) = v1(idx1); | 
 |   v2(idx0) = v2(idx2); | 
 |   v1.minCoeff(&eigen_minidx); | 
 |   v2.maxCoeff(&eigen_maxidx); | 
 |   VERIFY(eigen_minidx == (std::min)(idx0,idx1)); | 
 |   VERIFY(eigen_maxidx == (std::min)(idx0,idx2)); | 
 |  | 
 |   if (!NumTraits<Scalar>::IsInteger && size > 2) { | 
 |     // Test NaN propagation by replacing an element with NaN. | 
 |     for (Index i = 0; i < size; ++i) { | 
 |       if (i != minidx && i != maxidx) { | 
 |         v(i) = NumTraits<Scalar>::quiet_NaN(); | 
 |         break; | 
 |       } | 
 |     } | 
 |     eigen_minc = v.template minCoeff<PropagateNumbers>(&eigen_minidx); | 
 |     eigen_maxc = v.template maxCoeff<PropagateNumbers>(&eigen_maxidx); | 
 |     VERIFY(minidx == eigen_minidx); | 
 |     VERIFY(maxidx == eigen_maxidx); | 
 |     VERIFY_IS_APPROX(minc, eigen_minc); | 
 |     VERIFY_IS_APPROX(maxc, eigen_maxc); | 
 |     VERIFY_IS_APPROX(minc, v.template minCoeff<PropagateNumbers>()); | 
 |     VERIFY_IS_APPROX(maxc, v.template maxCoeff<PropagateNumbers>()); | 
 |  | 
 |     eigen_minc = v.template minCoeff<PropagateNaN>(&eigen_minidx); | 
 |     eigen_maxc = v.template maxCoeff<PropagateNaN>(&eigen_maxidx); | 
 |     VERIFY(minidx != eigen_minidx); | 
 |     VERIFY(maxidx != eigen_maxidx); | 
 |     VERIFY((numext::isnan)(eigen_minc)); | 
 |     VERIFY((numext::isnan)(eigen_maxc)); | 
 |   } | 
 | } | 
 |  | 
 | EIGEN_DECLARE_TEST(visitor) | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( matrixVisitor(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( matrixVisitor(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( matrixVisitor(Matrix4d()) ); | 
 |     CALL_SUBTEST_4( matrixVisitor(MatrixXd(8, 12)) ); | 
 |     CALL_SUBTEST_5( matrixVisitor(Matrix<double,Dynamic,Dynamic,RowMajor>(20, 20)) ); | 
 |     CALL_SUBTEST_6( matrixVisitor(MatrixXi(8, 12)) ); | 
 |   } | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_7( vectorVisitor(Vector4f()) ); | 
 |     CALL_SUBTEST_7( vectorVisitor(Matrix<int,12,1>()) ); | 
 |     CALL_SUBTEST_8( vectorVisitor(VectorXd(10)) ); | 
 |     CALL_SUBTEST_9( vectorVisitor(RowVectorXd(10)) ); | 
 |     CALL_SUBTEST_10( vectorVisitor(VectorXf(33)) ); | 
 |   } | 
 | } |