| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSEMATRIX_H |
| #define EIGEN_SPARSEMATRIX_H |
| |
| /** \class SparseMatrix |
| * |
| * \brief Sparse matrix |
| * |
| * \param _Scalar the scalar type, i.e. the type of the coefficients |
| * |
| * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. |
| * |
| */ |
| template<typename _Scalar, int _Flags> |
| struct ei_traits<SparseMatrix<_Scalar, _Flags> > |
| { |
| typedef _Scalar Scalar; |
| enum { |
| RowsAtCompileTime = Dynamic, |
| ColsAtCompileTime = Dynamic, |
| MaxRowsAtCompileTime = Dynamic, |
| MaxColsAtCompileTime = Dynamic, |
| Flags = SparseBit | _Flags, |
| CoeffReadCost = NumTraits<Scalar>::ReadCost, |
| SupportedAccessPatterns = InnerRandomAccessPattern |
| }; |
| }; |
| |
| |
| |
| template<typename _Scalar, int _Flags> |
| class SparseMatrix |
| : public SparseMatrixBase<SparseMatrix<_Scalar, _Flags> > |
| { |
| public: |
| EIGEN_SPARSE_GENERIC_PUBLIC_INTERFACE(SparseMatrix) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=) |
| EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=) |
| // FIXME: why are these operator already alvailable ??? |
| // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, *=) |
| // EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(SparseMatrix, /=) |
| |
| typedef MappedSparseMatrix<Scalar,Flags> Map; |
| |
| protected: |
| |
| enum { IsRowMajor = Base::IsRowMajor }; |
| typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; |
| |
| int m_outerSize; |
| int m_innerSize; |
| int* m_outerIndex; |
| CompressedStorage<Scalar> m_data; |
| |
| public: |
| |
| inline int rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } |
| inline int cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } |
| |
| inline int innerSize() const { return m_innerSize; } |
| inline int outerSize() const { return m_outerSize; } |
| inline int innerNonZeros(int j) const { return m_outerIndex[j+1]-m_outerIndex[j]; } |
| |
| inline const Scalar* _valuePtr() const { return &m_data.value(0); } |
| inline Scalar* _valuePtr() { return &m_data.value(0); } |
| |
| inline const int* _innerIndexPtr() const { return &m_data.index(0); } |
| inline int* _innerIndexPtr() { return &m_data.index(0); } |
| |
| inline const int* _outerIndexPtr() const { return m_outerIndex; } |
| inline int* _outerIndexPtr() { return m_outerIndex; } |
| |
| inline Scalar coeff(int row, int col) const |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| return m_data.atInRange(m_outerIndex[outer], m_outerIndex[outer+1], inner); |
| } |
| |
| inline Scalar& coeffRef(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| |
| int start = m_outerIndex[outer]; |
| int end = m_outerIndex[outer+1]; |
| ei_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); |
| ei_assert(end>start && "coeffRef cannot be called on a zero coefficient"); |
| const int id = m_data.searchLowerIndex(start,end-1,inner); |
| ei_assert((id<end) && (m_data.index(id)==inner) && "coeffRef cannot be called on a zero coefficient"); |
| return m_data.value(id); |
| } |
| |
| public: |
| |
| class InnerIterator; |
| |
| inline void setZero() |
| { |
| m_data.clear(); |
| //if (m_outerSize) |
| memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(int)); |
| // for (int i=0; i<m_outerSize; ++i) |
| // m_outerIndex[i] = 0; |
| // if (m_outerSize) |
| // m_outerIndex[i] = 0; |
| } |
| |
| /** \returns the number of non zero coefficients */ |
| inline int nonZeros() const { return m_data.size(); } |
| |
| /** Initializes the filling process of \c *this. |
| * \param reserveSize approximate number of nonzeros |
| * Note that the matrix \c *this is zero-ed. |
| */ |
| inline void startFill(int reserveSize = 1000) |
| { |
| setZero(); |
| m_data.reserve(reserveSize); |
| } |
| |
| /** |
| */ |
| inline Scalar& fill(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| |
| if (m_outerIndex[outer+1]==0) |
| { |
| // we start a new inner vector |
| int i = outer; |
| while (i>=0 && m_outerIndex[i]==0) |
| { |
| m_outerIndex[i] = m_data.size(); |
| --i; |
| } |
| m_outerIndex[outer+1] = m_outerIndex[outer]; |
| } |
| else |
| { |
| ei_assert(m_data.index(m_data.size()-1)<inner && "wrong sorted insertion"); |
| } |
| // std::cerr << size_t(m_outerIndex[outer+1]) << " == " << m_data.size() << "\n"; |
| assert(size_t(m_outerIndex[outer+1]) == m_data.size()); |
| int id = m_outerIndex[outer+1]; |
| ++m_outerIndex[outer+1]; |
| |
| m_data.append(0, inner); |
| return m_data.value(id); |
| } |
| |
| /** Like fill() but with random inner coordinates. |
| */ |
| inline Scalar& fillrand(int row, int col) |
| { |
| const int outer = IsRowMajor ? row : col; |
| const int inner = IsRowMajor ? col : row; |
| if (m_outerIndex[outer+1]==0) |
| { |
| // we start a new inner vector |
| // nothing special to do here |
| int i = outer; |
| while (i>=0 && m_outerIndex[i]==0) |
| { |
| m_outerIndex[i] = m_data.size(); |
| --i; |
| } |
| m_outerIndex[outer+1] = m_outerIndex[outer]; |
| } |
| assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "invalid outer index"); |
| size_t startId = m_outerIndex[outer]; |
| // FIXME let's make sure sizeof(long int) == sizeof(size_t) |
| size_t id = m_outerIndex[outer+1]; |
| ++m_outerIndex[outer+1]; |
| |
| float reallocRatio = 1; |
| if (m_data.allocatedSize()<id+1) |
| { |
| // we need to reallocate the data, to reduce multiple reallocations |
| // we use a smart resize algorithm based on the current filling ratio |
| // we use float to avoid overflows |
| float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer); |
| reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size()); |
| // let's bounds the realloc ratio to |
| // 1) reduce multiple minor realloc when the matrix is almost filled |
| // 2) avoid to allocate too much memory when the matrix is almost empty |
| reallocRatio = std::min(std::max(reallocRatio,1.5f),8.f); |
| } |
| m_data.resize(id+1,reallocRatio); |
| |
| while ( (id > startId) && (m_data.index(id-1) > inner) ) |
| { |
| m_data.index(id) = m_data.index(id-1); |
| m_data.value(id) = m_data.value(id-1); |
| --id; |
| } |
| |
| m_data.index(id) = inner; |
| return (m_data.value(id) = 0); |
| } |
| |
| inline void endFill() |
| { |
| int size = m_data.size(); |
| int i = m_outerSize; |
| // find the last filled column |
| while (i>=0 && m_outerIndex[i]==0) |
| --i; |
| ++i; |
| while (i<=m_outerSize) |
| { |
| m_outerIndex[i] = size; |
| ++i; |
| } |
| } |
| |
| void prune(Scalar reference, RealScalar epsilon = precision<RealScalar>()) |
| { |
| int k = 0; |
| for (int j=0; j<m_outerSize; ++j) |
| { |
| int previousStart = m_outerIndex[j]; |
| m_outerIndex[j] = k; |
| int end = m_outerIndex[j+1]; |
| for (int i=previousStart; i<end; ++i) |
| { |
| if (!ei_isMuchSmallerThan(m_data.value(i), reference, epsilon)) |
| { |
| m_data.value(k) = m_data.value(i); |
| m_data.index(k) = m_data.index(i); |
| ++k; |
| } |
| } |
| } |
| m_outerIndex[m_outerSize] = k; |
| m_data.resize(k,0); |
| } |
| |
| void resize(int rows, int cols) |
| { |
| // std::cerr << this << " resize " << rows << "x" << cols << "\n"; |
| const int outerSize = IsRowMajor ? rows : cols; |
| m_innerSize = IsRowMajor ? cols : rows; |
| m_data.clear(); |
| if (m_outerSize != outerSize) |
| { |
| delete[] m_outerIndex; |
| m_outerIndex = new int [outerSize+1]; |
| m_outerSize = outerSize; |
| memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(int)); |
| } |
| } |
| void resizeNonZeros(int size) |
| { |
| m_data.resize(size); |
| } |
| |
| inline SparseMatrix() |
| : m_outerSize(-1), m_innerSize(0), m_outerIndex(0) |
| { |
| resize(0, 0); |
| } |
| |
| inline SparseMatrix(int rows, int cols) |
| : m_outerSize(0), m_innerSize(0), m_outerIndex(0) |
| { |
| resize(rows, cols); |
| } |
| |
| template<typename OtherDerived> |
| inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) |
| : m_outerSize(0), m_innerSize(0), m_outerIndex(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline SparseMatrix(const SparseMatrix& other) |
| : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0) |
| { |
| *this = other.derived(); |
| } |
| |
| inline void swap(SparseMatrix& other) |
| { |
| //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); |
| std::swap(m_outerIndex, other.m_outerIndex); |
| std::swap(m_innerSize, other.m_innerSize); |
| std::swap(m_outerSize, other.m_outerSize); |
| m_data.swap(other.m_data); |
| } |
| |
| inline SparseMatrix& operator=(const SparseMatrix& other) |
| { |
| // std::cout << "SparseMatrix& operator=(const SparseMatrix& other)\n"; |
| if (other.isRValue()) |
| { |
| swap(other.const_cast_derived()); |
| } |
| else |
| { |
| resize(other.rows(), other.cols()); |
| memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(int)); |
| m_data = other.m_data; |
| } |
| return *this; |
| } |
| |
| template<typename OtherDerived> |
| inline SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other) |
| { |
| const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); |
| if (needToTranspose) |
| { |
| // two passes algorithm: |
| // 1 - compute the number of coeffs per dest inner vector |
| // 2 - do the actual copy/eval |
| // Since each coeff of the rhs has to be evaluated twice, let's evauluate it if needed |
| //typedef typename ei_nested<OtherDerived,2>::type OtherCopy; |
| typedef typename ei_eval<OtherDerived>::type OtherCopy; |
| typedef typename ei_cleantype<OtherCopy>::type _OtherCopy; |
| OtherCopy otherCopy(other.derived()); |
| |
| resize(other.rows(), other.cols()); |
| Eigen::Map<VectorXi>(m_outerIndex,outerSize()).setZero(); |
| // pass 1 |
| // FIXME the above copy could be merged with that pass |
| for (int j=0; j<otherCopy.outerSize(); ++j) |
| for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| ++m_outerIndex[it.index()]; |
| |
| // prefix sum |
| int count = 0; |
| VectorXi positions(outerSize()); |
| for (int j=0; j<outerSize(); ++j) |
| { |
| int tmp = m_outerIndex[j]; |
| m_outerIndex[j] = count; |
| positions[j] = count; |
| count += tmp; |
| } |
| m_outerIndex[outerSize()] = count; |
| // alloc |
| m_data.resize(count); |
| // pass 2 |
| for (int j=0; j<otherCopy.outerSize(); ++j) |
| for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) |
| { |
| int pos = positions[it.index()]++; |
| m_data.index(pos) = j; |
| m_data.value(pos) = it.value(); |
| } |
| |
| return *this; |
| } |
| else |
| { |
| // there is no special optimization |
| return SparseMatrixBase<SparseMatrix>::operator=(other.derived()); |
| } |
| } |
| |
| friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) |
| { |
| EIGEN_DBG_SPARSE( |
| s << "Nonzero entries:\n"; |
| for (int i=0; i<m.nonZeros(); ++i) |
| { |
| s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; |
| } |
| s << std::endl; |
| s << std::endl; |
| s << "Column pointers:\n"; |
| for (int i=0; i<m.outerSize(); ++i) |
| { |
| s << m.m_outerIndex[i] << " "; |
| } |
| s << " $" << std::endl; |
| s << std::endl; |
| ); |
| s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); |
| return s; |
| } |
| |
| /** Destructor */ |
| inline ~SparseMatrix() |
| { |
| delete[] m_outerIndex; |
| } |
| }; |
| |
| template<typename Scalar, int _Flags> |
| class SparseMatrix<Scalar,_Flags>::InnerIterator |
| { |
| public: |
| InnerIterator(const SparseMatrix& mat, int outer) |
| : m_matrix(mat), m_outer(outer), m_id(mat.m_outerIndex[outer]), m_start(m_id), m_end(mat.m_outerIndex[outer+1]) |
| {} |
| |
| template<unsigned int Added, unsigned int Removed> |
| InnerIterator(const Flagged<SparseMatrix,Added,Removed>& mat, int outer) |
| : m_matrix(mat._expression()), m_outer(outer), m_id(m_matrix.m_outerIndex[outer]), |
| m_start(m_id), m_end(m_matrix.m_outerIndex[outer+1]) |
| {} |
| |
| inline InnerIterator& operator++() { m_id++; return *this; } |
| |
| inline Scalar value() const { return m_matrix.m_data.value(m_id); } |
| inline Scalar& valueRef() { return const_cast<Scalar&>(m_matrix.m_data.value(m_id)); } |
| |
| inline int index() const { return m_matrix.m_data.index(m_id); } |
| inline int row() const { return IsRowMajor ? m_outer : index(); } |
| inline int col() const { return IsRowMajor ? index() : m_outer; } |
| |
| inline operator bool() const { return (m_id < m_end) && (m_id>=m_start); } |
| |
| protected: |
| const SparseMatrix& m_matrix; |
| const int m_outer; |
| int m_id; |
| const int m_start; |
| const int m_end; |
| }; |
| |
| #endif // EIGEN_SPARSEMATRIX_H |