| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #ifndef EIGEN_SPARSEPRODUCT_H |
| #define EIGEN_SPARSEPRODUCT_H |
| |
| template<typename Lhs, typename Rhs> struct ei_sparse_product_mode |
| { |
| enum { |
| |
| value = ((Lhs::Flags&Diagonal)==Diagonal || (Rhs::Flags&Diagonal)==Diagonal) |
| ? DiagonalProduct |
| : (Rhs::Flags&Lhs::Flags&SparseBit)==SparseBit |
| ? SparseTimeSparseProduct |
| : (Lhs::Flags&SparseBit)==SparseBit |
| ? SparseTimeDenseProduct |
| : DenseTimeSparseProduct }; |
| }; |
| |
| template<typename Lhs, typename Rhs, int ProductMode> |
| struct SparseProductReturnType |
| { |
| typedef const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type LhsNested; |
| typedef const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; |
| |
| typedef SparseProduct<LhsNested, RhsNested, ProductMode> Type; |
| }; |
| |
| template<typename Lhs, typename Rhs> |
| struct SparseProductReturnType<Lhs,Rhs,DiagonalProduct> |
| { |
| typedef const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type LhsNested; |
| typedef const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested; |
| |
| typedef SparseDiagonalProduct<LhsNested, RhsNested> Type; |
| }; |
| |
| // sparse product return type specialization |
| template<typename Lhs, typename Rhs> |
| struct SparseProductReturnType<Lhs,Rhs,SparseTimeSparseProduct> |
| { |
| typedef typename ei_traits<Lhs>::Scalar Scalar; |
| enum { |
| LhsRowMajor = ei_traits<Lhs>::Flags & RowMajorBit, |
| RhsRowMajor = ei_traits<Rhs>::Flags & RowMajorBit, |
| TransposeRhs = (!LhsRowMajor) && RhsRowMajor, |
| TransposeLhs = LhsRowMajor && (!RhsRowMajor) |
| }; |
| |
| // FIXME if we transpose let's evaluate to a LinkedVectorMatrix since it is the |
| // type of the temporary to perform the transpose op |
| typedef typename ei_meta_if<TransposeLhs, |
| SparseMatrix<Scalar,0>, |
| const typename ei_nested<Lhs,Rhs::RowsAtCompileTime>::type>::ret LhsNested; |
| |
| typedef typename ei_meta_if<TransposeRhs, |
| SparseMatrix<Scalar,0>, |
| const typename ei_nested<Rhs,Lhs::RowsAtCompileTime>::type>::ret RhsNested; |
| |
| typedef SparseProduct<LhsNested, RhsNested, SparseTimeSparseProduct> Type; |
| }; |
| |
| template<typename LhsNested, typename RhsNested, int ProductMode> |
| struct ei_traits<SparseProduct<LhsNested, RhsNested, ProductMode> > |
| { |
| // clean the nested types: |
| typedef typename ei_cleantype<LhsNested>::type _LhsNested; |
| typedef typename ei_cleantype<RhsNested>::type _RhsNested; |
| typedef typename _LhsNested::Scalar Scalar; |
| |
| enum { |
| LhsCoeffReadCost = _LhsNested::CoeffReadCost, |
| RhsCoeffReadCost = _RhsNested::CoeffReadCost, |
| LhsFlags = _LhsNested::Flags, |
| RhsFlags = _RhsNested::Flags, |
| |
| RowsAtCompileTime = _LhsNested::RowsAtCompileTime, |
| ColsAtCompileTime = _RhsNested::ColsAtCompileTime, |
| InnerSize = EIGEN_ENUM_MIN(_LhsNested::ColsAtCompileTime, _RhsNested::RowsAtCompileTime), |
| |
| MaxRowsAtCompileTime = _LhsNested::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = _RhsNested::MaxColsAtCompileTime, |
| |
| // LhsIsRowMajor = (LhsFlags & RowMajorBit)==RowMajorBit, |
| // RhsIsRowMajor = (RhsFlags & RowMajorBit)==RowMajorBit, |
| |
| EvalToRowMajor = (RhsFlags & LhsFlags & RowMajorBit), |
| ResultIsSparse = ProductMode==SparseTimeSparseProduct || ProductMode==DiagonalProduct, |
| |
| RemovedBits = ~( (EvalToRowMajor ? 0 : RowMajorBit) | (ResultIsSparse ? 0 : SparseBit) ), |
| |
| Flags = (int(LhsFlags | RhsFlags) & HereditaryBits & RemovedBits) |
| | EvalBeforeAssigningBit |
| | EvalBeforeNestingBit, |
| |
| CoeffReadCost = Dynamic |
| }; |
| |
| typedef typename ei_meta_if<ResultIsSparse, |
| SparseMatrixBase<SparseProduct<LhsNested, RhsNested, ProductMode> >, |
| MatrixBase<SparseProduct<LhsNested, RhsNested, ProductMode> > >::ret Base; |
| }; |
| |
| template<typename LhsNested, typename RhsNested, int ProductMode> |
| class SparseProduct : ei_no_assignment_operator, |
| public ei_traits<SparseProduct<LhsNested, RhsNested, ProductMode> >::Base |
| { |
| public: |
| |
| EIGEN_GENERIC_PUBLIC_INTERFACE(SparseProduct) |
| |
| private: |
| |
| typedef typename ei_traits<SparseProduct>::_LhsNested _LhsNested; |
| typedef typename ei_traits<SparseProduct>::_RhsNested _RhsNested; |
| |
| public: |
| |
| template<typename Lhs, typename Rhs> |
| EIGEN_STRONG_INLINE SparseProduct(const Lhs& lhs, const Rhs& rhs) |
| : m_lhs(lhs), m_rhs(rhs) |
| { |
| ei_assert(lhs.cols() == rhs.rows()); |
| |
| enum { |
| ProductIsValid = _LhsNested::ColsAtCompileTime==Dynamic |
| || _RhsNested::RowsAtCompileTime==Dynamic |
| || int(_LhsNested::ColsAtCompileTime)==int(_RhsNested::RowsAtCompileTime), |
| AreVectors = _LhsNested::IsVectorAtCompileTime && _RhsNested::IsVectorAtCompileTime, |
| SameSizes = EIGEN_PREDICATE_SAME_MATRIX_SIZE(_LhsNested,_RhsNested) |
| }; |
| // note to the lost user: |
| // * for a dot product use: v1.dot(v2) |
| // * for a coeff-wise product use: v1.cwise()*v2 |
| EIGEN_STATIC_ASSERT(ProductIsValid || !(AreVectors && SameSizes), |
| INVALID_VECTOR_VECTOR_PRODUCT__IF_YOU_WANTED_A_DOT_OR_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTIONS) |
| EIGEN_STATIC_ASSERT(ProductIsValid || !(SameSizes && !AreVectors), |
| INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION) |
| EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT) |
| } |
| |
| EIGEN_STRONG_INLINE int rows() const { return m_lhs.rows(); } |
| EIGEN_STRONG_INLINE int cols() const { return m_rhs.cols(); } |
| |
| EIGEN_STRONG_INLINE const _LhsNested& lhs() const { return m_lhs; } |
| EIGEN_STRONG_INLINE const _RhsNested& rhs() const { return m_rhs; } |
| |
| protected: |
| LhsNested m_lhs; |
| RhsNested m_rhs; |
| }; |
| |
| // perform a pseudo in-place sparse * sparse product assuming all matrices are col major |
| template<typename Lhs, typename Rhs, typename ResultType> |
| static void ei_sparse_product_impl(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar; |
| |
| // make sure to call innerSize/outerSize since we fake the storage order. |
| int rows = lhs.innerSize(); |
| int cols = rhs.outerSize(); |
| //int size = lhs.outerSize(); |
| ei_assert(lhs.outerSize() == rhs.innerSize()); |
| |
| // allocate a temporary buffer |
| AmbiVector<Scalar> tempVector(rows); |
| |
| // estimate the number of non zero entries |
| float ratioLhs = float(lhs.nonZeros())/(float(lhs.rows())*float(lhs.cols())); |
| float avgNnzPerRhsColumn = float(rhs.nonZeros())/float(cols); |
| float ratioRes = std::min(ratioLhs * avgNnzPerRhsColumn, 1.f); |
| |
| res.resize(rows, cols); |
| res.startFill(int(ratioRes*rows*cols)); |
| for (int j=0; j<cols; ++j) |
| { |
| // let's do a more accurate determination of the nnz ratio for the current column j of res |
| //float ratioColRes = std::min(ratioLhs * rhs.innerNonZeros(j), 1.f); |
| // FIXME find a nice way to get the number of nonzeros of a sub matrix (here an inner vector) |
| float ratioColRes = ratioRes; |
| tempVector.init(ratioColRes); |
| tempVector.setZero(); |
| for (typename Rhs::InnerIterator rhsIt(rhs, j); rhsIt; ++rhsIt) |
| { |
| // FIXME should be written like this: tmp += rhsIt.value() * lhs.col(rhsIt.index()) |
| tempVector.restart(); |
| Scalar x = rhsIt.value(); |
| for (typename Lhs::InnerIterator lhsIt(lhs, rhsIt.index()); lhsIt; ++lhsIt) |
| { |
| tempVector.coeffRef(lhsIt.index()) += lhsIt.value() * x; |
| } |
| } |
| for (typename AmbiVector<Scalar>::Iterator it(tempVector); it; ++it) |
| if (ResultType::Flags&RowMajorBit) |
| res.fill(j,it.index()) = it.value(); |
| else |
| res.fill(it.index(), j) = it.value(); |
| } |
| res.endFill(); |
| } |
| |
| template<typename Lhs, typename Rhs, typename ResultType, |
| int LhsStorageOrder = ei_traits<Lhs>::Flags&RowMajorBit, |
| int RhsStorageOrder = ei_traits<Rhs>::Flags&RowMajorBit, |
| int ResStorageOrder = ei_traits<ResultType>::Flags&RowMajorBit> |
| struct ei_sparse_product_selector; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,ColMajor> |
| { |
| typedef typename ei_traits<typename ei_cleantype<Lhs>::type>::Scalar Scalar; |
| |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols()); |
| ei_sparse_product_impl<Lhs,Rhs,ResultType>(lhs, rhs, _res); |
| res.swap(_res); |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct ei_sparse_product_selector<Lhs,Rhs,ResultType,ColMajor,ColMajor,RowMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| // we need a col-major matrix to hold the result |
| typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; |
| SparseTemporaryType _res(res.rows(), res.cols()); |
| ei_sparse_product_impl<Lhs,Rhs,SparseTemporaryType>(lhs, rhs, _res); |
| res = _res; |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,RowMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| // let's transpose the product to get a column x column product |
| typename ei_cleantype<ResultType>::type _res(res.rows(), res.cols()); |
| ei_sparse_product_impl<Rhs,Lhs,ResultType>(rhs, lhs, _res); |
| res.swap(_res); |
| } |
| }; |
| |
| template<typename Lhs, typename Rhs, typename ResultType> |
| struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,RowMajor,ColMajor> |
| { |
| static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| { |
| // let's transpose the product to get a column x column product |
| typedef SparseMatrix<typename ResultType::Scalar> SparseTemporaryType; |
| SparseTemporaryType _res(res.cols(), res.rows()); |
| ei_sparse_product_impl<Rhs,Lhs,SparseTemporaryType>(rhs, lhs, _res); |
| res = _res.transpose(); |
| } |
| }; |
| |
| // NOTE eventually let's transpose one argument even in this case since it might be expensive if |
| // the result is not dense. |
| // template<typename Lhs, typename Rhs, typename ResultType, int ResStorageOrder> |
| // struct ei_sparse_product_selector<Lhs,Rhs,ResultType,RowMajor,ColMajor,ResStorageOrder> |
| // { |
| // static void run(const Lhs& lhs, const Rhs& rhs, ResultType& res) |
| // { |
| // // trivial product as lhs.row/rhs.col dot products |
| // // loop over the preferred order of the result |
| // } |
| // }; |
| |
| // NOTE the 2 others cases (col row *) must never occurs since they are caught |
| // by ProductReturnType which transform it to (col col *) by evaluating rhs. |
| |
| |
| // template<typename Derived> |
| // template<typename Lhs, typename Rhs> |
| // inline Derived& SparseMatrixBase<Derived>::lazyAssign(const SparseProduct<Lhs,Rhs>& product) |
| // { |
| // // std::cout << "sparse product to dense\n"; |
| // ei_sparse_product_selector< |
| // typename ei_cleantype<Lhs>::type, |
| // typename ei_cleantype<Rhs>::type, |
| // typename ei_cleantype<Derived>::type>::run(product.lhs(),product.rhs(),derived()); |
| // return derived(); |
| // } |
| |
| // sparse = sparse * sparse |
| template<typename Derived> |
| template<typename Lhs, typename Rhs> |
| inline Derived& SparseMatrixBase<Derived>::operator=(const SparseProduct<Lhs,Rhs,SparseTimeSparseProduct>& product) |
| { |
| ei_sparse_product_selector< |
| typename ei_cleantype<Lhs>::type, |
| typename ei_cleantype<Rhs>::type, |
| Derived>::run(product.lhs(),product.rhs(),derived()); |
| return derived(); |
| } |
| |
| // dense = sparse * dense |
| // template<typename Derived> |
| // template<typename Lhs, typename Rhs> |
| // Derived& MatrixBase<Derived>::lazyAssign(const SparseProduct<Lhs,Rhs,SparseTimeDenseProduct>& product) |
| // { |
| // typedef typename ei_cleantype<Lhs>::type _Lhs; |
| // typedef typename _Lhs::InnerIterator LhsInnerIterator; |
| // enum { LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit }; |
| // derived().setZero(); |
| // for (int j=0; j<product.lhs().outerSize(); ++j) |
| // for (LhsInnerIterator i(product.lhs(),j); i; ++i) |
| // derived().row(LhsIsRowMajor ? j : i.index()) += i.value() * product.rhs().row(LhsIsRowMajor ? i.index() : j); |
| // return derived(); |
| // } |
| |
| template<typename Derived> |
| template<typename Lhs, typename Rhs> |
| Derived& MatrixBase<Derived>::lazyAssign(const SparseProduct<Lhs,Rhs,SparseTimeDenseProduct>& product) |
| { |
| typedef typename ei_cleantype<Lhs>::type _Lhs; |
| typedef typename ei_cleantype<Rhs>::type _Rhs; |
| typedef typename _Lhs::InnerIterator LhsInnerIterator; |
| enum { |
| LhsIsRowMajor = (_Lhs::Flags&RowMajorBit)==RowMajorBit, |
| LhsIsSelfAdjoint = (_Lhs::Flags&SelfAdjointBit)==SelfAdjointBit, |
| ProcessFirstHalf = LhsIsSelfAdjoint |
| && ( ((_Lhs::Flags&(UpperTriangularBit|LowerTriangularBit))==0) |
| || ( (_Lhs::Flags&UpperTriangularBit) && !LhsIsRowMajor) |
| || ( (_Lhs::Flags&LowerTriangularBit) && LhsIsRowMajor) ), |
| ProcessSecondHalf = LhsIsSelfAdjoint && (!ProcessFirstHalf) |
| }; |
| derived().setZero(); |
| for (int j=0; j<product.lhs().outerSize(); ++j) |
| { |
| LhsInnerIterator i(product.lhs(),j); |
| if (ProcessSecondHalf && i && (i.index()==j)) |
| { |
| derived().row(j) += i.value() * product.rhs().row(j); |
| ++i; |
| } |
| Block<Derived,1,Derived::ColsAtCompileTime> res(derived().row(LhsIsRowMajor ? j : 0)); |
| for (; (ProcessFirstHalf ? i && i.index() < j : i) ; ++i) |
| { |
| if (LhsIsSelfAdjoint) |
| { |
| int a = LhsIsRowMajor ? j : i.index(); |
| int b = LhsIsRowMajor ? i.index() : j; |
| Scalar v = i.value(); |
| derived().row(a) += (v) * product.rhs().row(b); |
| derived().row(b) += ei_conj(v) * product.rhs().row(a); |
| } |
| else if (LhsIsRowMajor) |
| res += i.value() * product.rhs().row(i.index()); |
| else |
| derived().row(i.index()) += i.value() * product.rhs().row(j); |
| } |
| if (ProcessFirstHalf && i && (i.index()==j)) |
| derived().row(j) += i.value() * product.rhs().row(j); |
| } |
| return derived(); |
| } |
| |
| // dense = dense * sparse |
| template<typename Derived> |
| template<typename Lhs, typename Rhs> |
| Derived& MatrixBase<Derived>::lazyAssign(const SparseProduct<Lhs,Rhs,DenseTimeSparseProduct>& product) |
| { |
| typedef typename ei_cleantype<Rhs>::type _Rhs; |
| typedef typename _Rhs::InnerIterator RhsInnerIterator; |
| enum { RhsIsRowMajor = (_Rhs::Flags&RowMajorBit)==RowMajorBit }; |
| derived().setZero(); |
| for (int j=0; j<product.rhs().outerSize(); ++j) |
| for (RhsInnerIterator i(product.rhs(),j); i; ++i) |
| derived().col(RhsIsRowMajor ? i.index() : j) += i.value() * product.lhs().col(RhsIsRowMajor ? j : i.index()); |
| return derived(); |
| } |
| |
| // sparse * sparse |
| template<typename Derived> |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE const typename SparseProductReturnType<Derived,OtherDerived>::Type |
| SparseMatrixBase<Derived>::operator*(const SparseMatrixBase<OtherDerived> &other) const |
| { |
| return typename SparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); |
| } |
| |
| // sparse * dense |
| template<typename Derived> |
| template<typename OtherDerived> |
| EIGEN_STRONG_INLINE const typename SparseProductReturnType<Derived,OtherDerived>::Type |
| SparseMatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const |
| { |
| return typename SparseProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived()); |
| } |
| |
| #endif // EIGEN_SPARSEPRODUCT_H |