|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  | // | 
|  | // The conversion routines are Copyright (c) Fabian Giesen, 2016. | 
|  | // The original license follows: | 
|  | // | 
|  | // Copyright (c) Fabian Giesen, 2016 | 
|  | // All rights reserved. | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted. | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  |  | 
|  | // Standard 16-bit float type, mostly useful for GPUs. Defines a new | 
|  | // type Eigen::half (inheriting either from CUDA's or HIP's __half struct) with | 
|  | // operator overloads such that it behaves basically as an arithmetic | 
|  | // type. It will be quite slow on CPUs (so it is recommended to stay | 
|  | // in fp32 for CPUs, except for simple parameter conversions, I/O | 
|  | // to disk and the likes), but fast on GPUs. | 
|  |  | 
|  |  | 
|  | #ifndef EIGEN_HALF_H | 
|  | #define EIGEN_HALF_H | 
|  |  | 
|  | #include "../../InternalHeaderCheck.h" | 
|  | #include <sstream> | 
|  |  | 
|  | #if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | // When compiling with GPU support, the "__half_raw" base class as well as | 
|  | // some other routines are defined in the GPU compiler header files | 
|  | // (cuda_fp16.h, hip_fp16.h), and they are not tagged constexpr | 
|  | // As a consequence, we get compile failures when compiling Eigen with | 
|  | // GPU support. Hence the need to disable EIGEN_CONSTEXPR when building | 
|  | // Eigen with GPU support | 
|  | #pragma push_macro("EIGEN_CONSTEXPR") | 
|  | #undef EIGEN_CONSTEXPR | 
|  | #define EIGEN_CONSTEXPR | 
|  | #endif | 
|  |  | 
|  | #define F16_PACKET_FUNCTION(PACKET_F, PACKET_F16, METHOD)           \ | 
|  | template <>                                                       \ | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_UNUSED                \ | 
|  | PACKET_F16 METHOD<PACKET_F16>(const PACKET_F16& _x) {             \ | 
|  | return float2half(METHOD<PACKET_F>(half2float(_x)));            \ | 
|  | } | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | struct half; | 
|  |  | 
|  | namespace half_impl { | 
|  |  | 
|  | // We want to use the __half_raw struct from the HIP header file only during the device compile phase. | 
|  | // This is required because of a quirk in the way TensorFlow GPU builds are done. | 
|  | // When compiling TensorFlow source code with GPU support, files that | 
|  | //  * contain GPU kernels (i.e. *.cu.cc files) are compiled via hipcc | 
|  | //  * do not contain GPU kernels ( i.e. *.cc files) are compiled via gcc (typically) | 
|  | // | 
|  | // Tensorflow uses the Eigen::half type as its FP16 type, and there are functions that | 
|  | //  * are defined in a file that gets compiled via hipcc AND | 
|  | //  * have Eigen::half as a pass-by-value argument AND | 
|  | //  * are called in a file that gets compiled via gcc | 
|  | // | 
|  | // In the scenario described above the caller and callee will see different versions | 
|  | // of the Eigen::half base class __half_raw, and they will be compiled by different compilers | 
|  | // | 
|  | // There appears to be an ABI mismatch between gcc and clang (which is called by hipcc) that results in | 
|  | // the callee getting corrupted values for the Eigen::half argument. | 
|  | // | 
|  | // Making the host side compile phase of hipcc use the same Eigen::half impl, as the gcc compile, resolves | 
|  | // this error, and hence the following convoluted #if condition | 
|  | #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | // Make our own __half_raw definition that is similar to CUDA's. | 
|  | struct __half_raw { | 
|  | #if (defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE)) | 
|  | // Eigen::half can be used as the datatype for shared memory declarations (in Eigen and TF) | 
|  | // The element type for shared memory cannot have non-trivial constructors | 
|  | // and hence the following special casing (which skips the zero-initilization). | 
|  | // Note that this check gets done even in the host compilation phase, and | 
|  | // hence the need for this | 
|  | EIGEN_DEVICE_FUNC __half_raw() {} | 
|  | #else | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw() : x(0) {} | 
|  | #endif | 
|  | #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(numext::bit_cast<__fp16>(raw)) { | 
|  | } | 
|  | __fp16 x; | 
|  | #else | 
|  | explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw(numext::uint16_t raw) : x(raw) {} | 
|  | numext::uint16_t x; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #elif defined(EIGEN_HAS_HIP_FP16) | 
|  | // Nothing to do here | 
|  | // HIP fp16 header file has a definition for __half_raw | 
|  | #elif defined(EIGEN_HAS_CUDA_FP16) | 
|  | #if EIGEN_CUDA_SDK_VER < 90000 | 
|  | // In CUDA < 9.0, __half is the equivalent of CUDA 9's __half_raw | 
|  | typedef __half __half_raw; | 
|  | #endif // defined(EIGEN_HAS_CUDA_FP16) | 
|  | #elif defined(SYCL_DEVICE_ONLY) | 
|  | typedef cl::sycl::half __half_raw; | 
|  | #endif | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x); | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff); | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h); | 
|  |  | 
|  | struct half_base : public __half_raw { | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base() {} | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half_raw& h) : __half_raw(h) {} | 
|  |  | 
|  | #if defined(EIGEN_HAS_GPU_FP16) | 
|  | #if defined(EIGEN_HAS_HIP_FP16) | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) { x = __half_as_ushort(h); } | 
|  | #elif defined(EIGEN_HAS_CUDA_FP16) | 
|  | #if EIGEN_CUDA_SDK_VER >= 90000 | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half_base(const __half& h) : __half_raw(*(__half_raw*)&h) {} | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | } // namespace half_impl | 
|  |  | 
|  | // Class definition. | 
|  | struct half : public half_impl::half_base { | 
|  |  | 
|  | // Writing this out as separate #if-else blocks to make the code easier to follow | 
|  | // The same applies to most #if-else blocks in this file | 
|  | #if !defined(EIGEN_HAS_GPU_FP16) || !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | // Use the same base class for the following two scenarios | 
|  | // * when compiling without GPU support enabled | 
|  | // * during host compile phase when compiling with GPU support enabled | 
|  | typedef half_impl::__half_raw __half_raw; | 
|  | #elif defined(EIGEN_HAS_HIP_FP16) | 
|  | // Nothing to do here | 
|  | // HIP fp16 header file has a definition for __half_raw | 
|  | #elif defined(EIGEN_HAS_CUDA_FP16) | 
|  | // Note that EIGEN_CUDA_SDK_VER is set to 0 even when compiling with HIP, so | 
|  | // (EIGEN_CUDA_SDK_VER < 90000) is true even for HIP!  So keeping this within | 
|  | // #if defined(EIGEN_HAS_CUDA_FP16) is needed | 
|  | #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER < 90000 | 
|  | typedef half_impl::__half_raw __half_raw; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half() {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half_raw& h) : half_impl::half_base(h) {} | 
|  |  | 
|  | #if defined(EIGEN_HAS_GPU_FP16) | 
|  | #if defined(EIGEN_HAS_HIP_FP16) | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} | 
|  | #elif defined(EIGEN_HAS_CUDA_FP16) | 
|  | #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(const __half& h) : half_impl::half_base(h) {} | 
|  | #endif | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  | explicit EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR half(bool b) | 
|  | : half_impl::half_base(half_impl::raw_uint16_to_half(b ? 0x3c00 : 0)) {} | 
|  | template<class T> | 
|  | explicit EIGEN_DEVICE_FUNC half(T val) | 
|  | : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(val))) {} | 
|  | explicit EIGEN_DEVICE_FUNC half(float f) | 
|  | : half_impl::half_base(half_impl::float_to_half_rtne(f)) {} | 
|  |  | 
|  | // Following the convention of numpy, converting between complex and | 
|  | // float will lead to loss of imag value. | 
|  | template<typename RealScalar> | 
|  | explicit EIGEN_DEVICE_FUNC half(std::complex<RealScalar> c) | 
|  | : half_impl::half_base(half_impl::float_to_half_rtne(static_cast<float>(c.real()))) {} | 
|  |  | 
|  | EIGEN_DEVICE_FUNC operator float() const {  // NOLINT: Allow implicit conversion to float, because it is lossless. | 
|  | return half_impl::half_to_float(*this); | 
|  | } | 
|  |  | 
|  | #if defined(EIGEN_HAS_GPU_FP16) && !defined(EIGEN_GPU_COMPILE_PHASE) | 
|  | EIGEN_DEVICE_FUNC operator __half() const { | 
|  | ::__half_raw hr; | 
|  | hr.x = x; | 
|  | return __half(hr); | 
|  | } | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | namespace std { | 
|  | template<> | 
|  | struct numeric_limits<Eigen::half> { | 
|  | static EIGEN_CONSTEXPR const bool is_specialized = true; | 
|  | static EIGEN_CONSTEXPR const bool is_signed = true; | 
|  | static EIGEN_CONSTEXPR const bool is_integer = false; | 
|  | static EIGEN_CONSTEXPR const bool is_exact = false; | 
|  | static EIGEN_CONSTEXPR const bool has_infinity = true; | 
|  | static EIGEN_CONSTEXPR const bool has_quiet_NaN = true; | 
|  | static EIGEN_CONSTEXPR const bool has_signaling_NaN = true; | 
|  | static EIGEN_CONSTEXPR const float_denorm_style has_denorm = denorm_present; | 
|  | static EIGEN_CONSTEXPR const bool has_denorm_loss = false; | 
|  | static EIGEN_CONSTEXPR const std::float_round_style round_style = std::round_to_nearest; | 
|  | static EIGEN_CONSTEXPR const bool is_iec559 = true; | 
|  | // The C++ standard defines this as "true if the set of values representable | 
|  | // by the type is finite." Half has finite precision. | 
|  | static EIGEN_CONSTEXPR const bool is_bounded = true; | 
|  | static EIGEN_CONSTEXPR const bool is_modulo = false; | 
|  | static EIGEN_CONSTEXPR const int digits = 11; | 
|  | static EIGEN_CONSTEXPR const int digits10 = 3;      // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html | 
|  | static EIGEN_CONSTEXPR const int max_digits10 = 5;  // according to http://half.sourceforge.net/structstd_1_1numeric__limits_3_01half__float_1_1half_01_4.html | 
|  | static EIGEN_CONSTEXPR const int radix = numeric_limits<float>::radix; | 
|  | static EIGEN_CONSTEXPR const int min_exponent = -13; | 
|  | static EIGEN_CONSTEXPR const int min_exponent10 = -4; | 
|  | static EIGEN_CONSTEXPR const int max_exponent = 16; | 
|  | static EIGEN_CONSTEXPR const int max_exponent10 = 4; | 
|  | static EIGEN_CONSTEXPR const bool traps = numeric_limits<float>::traps; | 
|  | // IEEE754: "The implementer shall choose how tininess is detected, but shall | 
|  | // detect tininess in the same way for all operations in radix two" | 
|  | static EIGEN_CONSTEXPR const bool tinyness_before = std::numeric_limits<float>::tinyness_before; | 
|  |  | 
|  | static EIGEN_CONSTEXPR Eigen::half (min)() { return Eigen::half_impl::raw_uint16_to_half(0x0400); } | 
|  | static EIGEN_CONSTEXPR Eigen::half lowest() { return Eigen::half_impl::raw_uint16_to_half(0xfbff); } | 
|  | static EIGEN_CONSTEXPR Eigen::half (max)() { return Eigen::half_impl::raw_uint16_to_half(0x7bff); } | 
|  | static EIGEN_CONSTEXPR Eigen::half epsilon() { return Eigen::half_impl::raw_uint16_to_half(0x1400); } | 
|  | static EIGEN_CONSTEXPR Eigen::half round_error() { return Eigen::half_impl::raw_uint16_to_half(0x3800); } | 
|  | static EIGEN_CONSTEXPR Eigen::half infinity() { return Eigen::half_impl::raw_uint16_to_half(0x7c00); } | 
|  | static EIGEN_CONSTEXPR Eigen::half quiet_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7e00); } | 
|  | static EIGEN_CONSTEXPR Eigen::half signaling_NaN() { return Eigen::half_impl::raw_uint16_to_half(0x7d00); } | 
|  | static EIGEN_CONSTEXPR Eigen::half denorm_min() { return Eigen::half_impl::raw_uint16_to_half(0x0001); } | 
|  | }; | 
|  |  | 
|  | // If std::numeric_limits<T> is specialized, should also specialize | 
|  | // std::numeric_limits<const T>, std::numeric_limits<volatile T>, and | 
|  | // std::numeric_limits<const volatile T> | 
|  | // https://stackoverflow.com/a/16519653/ | 
|  | template<> | 
|  | struct numeric_limits<const Eigen::half> : numeric_limits<Eigen::half> {}; | 
|  | template<> | 
|  | struct numeric_limits<volatile Eigen::half> : numeric_limits<Eigen::half> {}; | 
|  | template<> | 
|  | struct numeric_limits<const volatile Eigen::half> : numeric_limits<Eigen::half> {}; | 
|  | } // end namespace std | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace half_impl { | 
|  |  | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && \ | 
|  | EIGEN_CUDA_ARCH >= 530) ||                                  \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(HIP_DEVICE_COMPILE)) | 
|  | // Note: We deliberately do *not* define this to 1 even if we have Arm's native | 
|  | // fp16 type since GPU halfs are rather different from native CPU halfs. | 
|  | // TODO: Rename to something like EIGEN_HAS_NATIVE_GPU_FP16 | 
|  | #define EIGEN_HAS_NATIVE_FP16 | 
|  | #endif | 
|  |  | 
|  | // Intrinsics for native fp16 support. Note that on current hardware, | 
|  | // these are no faster than fp32 arithmetic (you need to use the half2 | 
|  | // versions to get the ALU speed increased), but you do save the | 
|  | // conversion steps back and forth. | 
|  |  | 
|  | #if defined(EIGEN_HAS_NATIVE_FP16) | 
|  | EIGEN_STRONG_INLINE __device__ half operator + (const half& a, const half& b) { | 
|  | #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 | 
|  | return __hadd(::__half(a), ::__half(b)); | 
|  | #else | 
|  | return __hadd(a, b); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half operator * (const half& a, const half& b) { | 
|  | return __hmul(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half operator - (const half& a, const half& b) { | 
|  | return __hsub(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half operator / (const half& a, const half& b) { | 
|  | #if defined(EIGEN_CUDA_SDK_VER) && EIGEN_CUDA_SDK_VER >= 90000 | 
|  | return __hdiv(a, b); | 
|  | #else | 
|  | float num = __half2float(a); | 
|  | float denom = __half2float(b); | 
|  | return __float2half(num / denom); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half operator - (const half& a) { | 
|  | return __hneg(a); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half& operator += (half& a, const half& b) { | 
|  | a = a + b; | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half& operator *= (half& a, const half& b) { | 
|  | a = a * b; | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half& operator -= (half& a, const half& b) { | 
|  | a = a - b; | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ half& operator /= (half& a, const half& b) { | 
|  | a = a / b; | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator == (const half& a, const half& b) { | 
|  | return __heq(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator != (const half& a, const half& b) { | 
|  | return __hne(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator < (const half& a, const half& b) { | 
|  | return __hlt(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator <= (const half& a, const half& b) { | 
|  | return __hle(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator > (const half& a, const half& b) { | 
|  | return __hgt(a, b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE __device__ bool operator >= (const half& a, const half& b) { | 
|  | return __hge(a, b); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { | 
|  | return half(vaddh_f16(a.x, b.x)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { | 
|  | return half(vmulh_f16(a.x, b.x)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { | 
|  | return half(vsubh_f16(a.x, b.x)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { | 
|  | return half(vdivh_f16(a.x, b.x)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { | 
|  | return half(vnegh_f16(a.x)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { | 
|  | a = half(vaddh_f16(a.x, b.x)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { | 
|  | a = half(vmulh_f16(a.x, b.x)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { | 
|  | a = half(vsubh_f16(a.x, b.x)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { | 
|  | a = half(vdivh_f16(a.x, b.x)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { | 
|  | return vceqh_f16(a.x, b.x); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { | 
|  | return !vceqh_f16(a.x, b.x); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { | 
|  | return vclth_f16(a.x, b.x); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { | 
|  | return vcleh_f16(a.x, b.x); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { | 
|  | return vcgth_f16(a.x, b.x); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { | 
|  | return vcgeh_f16(a.x, b.x); | 
|  | } | 
|  | // We need to distinguish ‘clang as the CUDA compiler’ from ‘clang as the host compiler, | 
|  | // invoked by NVCC’ (e.g. on MacOS). The former needs to see both host and device implementation | 
|  | // of the functions, while the latter can only deal with one of them. | 
|  | #elif !defined(EIGEN_HAS_NATIVE_FP16) || (EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC) // Emulate support for half floats | 
|  |  | 
|  | #if EIGEN_COMP_CLANG && defined(EIGEN_CUDACC) | 
|  | // We need to provide emulated *host-side* FP16 operators for clang. | 
|  | #pragma push_macro("EIGEN_DEVICE_FUNC") | 
|  | #undef EIGEN_DEVICE_FUNC | 
|  | #if defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_HAS_NATIVE_FP16) | 
|  | #define EIGEN_DEVICE_FUNC __host__ | 
|  | #else // both host and device need emulated ops. | 
|  | #define EIGEN_DEVICE_FUNC __host__ __device__ | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | // Definitions for CPUs and older HIP+CUDA, mostly working through conversion | 
|  | // to/from fp32. | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator + (const half& a, const half& b) { | 
|  | return half(float(a) + float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator * (const half& a, const half& b) { | 
|  | return half(float(a) * float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a, const half& b) { | 
|  | return half(float(a) - float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, const half& b) { | 
|  | return half(float(a) / float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator - (const half& a) { | 
|  | half result; | 
|  | result.x = a.x ^ 0x8000; | 
|  | return result; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator += (half& a, const half& b) { | 
|  | a = half(float(a) + float(b)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator *= (half& a, const half& b) { | 
|  | a = half(float(a) * float(b)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator -= (half& a, const half& b) { | 
|  | a = half(float(a) - float(b)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half& operator /= (half& a, const half& b) { | 
|  | a = half(float(a) / float(b)); | 
|  | return a; | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator == (const half& a, const half& b) { | 
|  | return numext::equal_strict(float(a),float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator != (const half& a, const half& b) { | 
|  | return numext::not_equal_strict(float(a), float(b)); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator < (const half& a, const half& b) { | 
|  | return float(a) < float(b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator <= (const half& a, const half& b) { | 
|  | return float(a) <= float(b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator > (const half& a, const half& b) { | 
|  | return float(a) > float(b); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool operator >= (const half& a, const half& b) { | 
|  | return float(a) >= float(b); | 
|  | } | 
|  |  | 
|  | #if defined(__clang__) && defined(__CUDA__) | 
|  | #pragma pop_macro("EIGEN_DEVICE_FUNC") | 
|  | #endif | 
|  | #endif  // Emulate support for half floats | 
|  |  | 
|  | // Division by an index. Do it in full float precision to avoid accuracy | 
|  | // issues in converting the denominator to half. | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator / (const half& a, Index b) { | 
|  | return half(static_cast<float>(a) / static_cast<float>(b)); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a) { | 
|  | a += half(1); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a) { | 
|  | a -= half(1); | 
|  | return a; | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator++(half& a, int) { | 
|  | half original_value = a; | 
|  | ++a; | 
|  | return original_value; | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half operator--(half& a, int) { | 
|  | half original_value = a; | 
|  | --a; | 
|  | return original_value; | 
|  | } | 
|  |  | 
|  | // Conversion routines, including fallbacks for the host or older CUDA. | 
|  | // Note that newer Intel CPUs (Haswell or newer) have vectorized versions of | 
|  | // these in hardware. If we need more performance on older/other CPUs, they are | 
|  | // also possible to vectorize directly. | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR __half_raw raw_uint16_to_half(numext::uint16_t x) { | 
|  | // We cannot simply do a "return __half_raw(x)" here, because __half_raw is union type | 
|  | // in the hip_fp16 header file, and that will trigger a compile error | 
|  | // On the other hand, having anything but a return statement also triggers a compile error | 
|  | // because this is constexpr function. | 
|  | // Fortunately, since we need to disable EIGEN_CONSTEXPR for GPU anyway, we can get out | 
|  | // of this catch22 by having separate bodies for GPU / non GPU | 
|  | #if defined(EIGEN_HAS_GPU_FP16) | 
|  | __half_raw h; | 
|  | h.x = x; | 
|  | return h; | 
|  | #else | 
|  | return __half_raw(x); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC numext::uint16_t raw_half_as_uint16(const __half_raw& h) { | 
|  | // HIP/CUDA/Default have a member 'x' of type uint16_t. | 
|  | // For ARM64 native half, the member 'x' is of type __fp16, so we need to bit-cast. | 
|  | // For SYCL, cl::sycl::half is _Float16, so cast directly. | 
|  | #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | return numext::bit_cast<numext::uint16_t>(h.x); | 
|  | #elif defined(SYCL_DEVICE_ONLY) | 
|  | return numext::bit_cast<numext::uint16_t>(h); | 
|  | #else | 
|  | return h.x; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | union float32_bits { | 
|  | unsigned int u; | 
|  | float f; | 
|  | }; | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC __half_raw float_to_half_rtne(float ff) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | __half tmp_ff = __float2half(ff); | 
|  | return *(__half_raw*)&tmp_ff; | 
|  |  | 
|  | #elif defined(EIGEN_HAS_FP16_C) | 
|  | __half_raw h; | 
|  | h.x = _cvtss_sh(ff, 0); | 
|  | return h; | 
|  |  | 
|  | #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | __half_raw h; | 
|  | h.x = static_cast<__fp16>(ff); | 
|  | return h; | 
|  |  | 
|  | #else | 
|  | float32_bits f; f.f = ff; | 
|  |  | 
|  | const float32_bits f32infty = { 255 << 23 }; | 
|  | const float32_bits f16max = { (127 + 16) << 23 }; | 
|  | const float32_bits denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; | 
|  | unsigned int sign_mask = 0x80000000u; | 
|  | __half_raw o; | 
|  | o.x = static_cast<numext::uint16_t>(0x0u); | 
|  |  | 
|  | unsigned int sign = f.u & sign_mask; | 
|  | f.u ^= sign; | 
|  |  | 
|  | // NOTE all the integer compares in this function can be safely | 
|  | // compiled into signed compares since all operands are below | 
|  | // 0x80000000. Important if you want fast straight SSE2 code | 
|  | // (since there's no unsigned PCMPGTD). | 
|  |  | 
|  | if (f.u >= f16max.u) {  // result is Inf or NaN (all exponent bits set) | 
|  | o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf | 
|  | } else {  // (De)normalized number or zero | 
|  | if (f.u < (113 << 23)) {  // resulting FP16 is subnormal or zero | 
|  | // use a magic value to align our 10 mantissa bits at the bottom of | 
|  | // the float. as long as FP addition is round-to-nearest-even this | 
|  | // just works. | 
|  | f.f += denorm_magic.f; | 
|  |  | 
|  | // and one integer subtract of the bias later, we have our final float! | 
|  | o.x = static_cast<numext::uint16_t>(f.u - denorm_magic.u); | 
|  | } else { | 
|  | unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd | 
|  |  | 
|  | // update exponent, rounding bias part 1 | 
|  | // Equivalent to `f.u += ((unsigned int)(15 - 127) << 23) + 0xfff`, but | 
|  | // without arithmetic overflow. | 
|  | f.u += 0xc8000fffU; | 
|  | // rounding bias part 2 | 
|  | f.u += mant_odd; | 
|  | // take the bits! | 
|  | o.x = static_cast<numext::uint16_t>(f.u >> 13); | 
|  | } | 
|  | } | 
|  |  | 
|  | o.x |= static_cast<numext::uint16_t>(sign >> 16); | 
|  | return o; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC float half_to_float(__half_raw h) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 300) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | return __half2float(h); | 
|  | #elif defined(EIGEN_HAS_FP16_C) | 
|  | return _cvtsh_ss(h.x); | 
|  | #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | return static_cast<float>(h.x); | 
|  | #else | 
|  | const float32_bits magic = { 113 << 23 }; | 
|  | const unsigned int shifted_exp = 0x7c00 << 13; // exponent mask after shift | 
|  | float32_bits o; | 
|  |  | 
|  | o.u = (h.x & 0x7fff) << 13;             // exponent/mantissa bits | 
|  | unsigned int exp = shifted_exp & o.u;   // just the exponent | 
|  | o.u += (127 - 15) << 23;                // exponent adjust | 
|  |  | 
|  | // handle exponent special cases | 
|  | if (exp == shifted_exp) {     // Inf/NaN? | 
|  | o.u += (128 - 16) << 23;    // extra exp adjust | 
|  | } else if (exp == 0) {        // Zero/Denormal? | 
|  | o.u += 1 << 23;             // extra exp adjust | 
|  | o.f -= magic.f;             // renormalize | 
|  | } | 
|  |  | 
|  | o.u |= (h.x & 0x8000) << 16;    // sign bit | 
|  | return o.f; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // --- standard functions --- | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isinf)(const half& a) { | 
|  | #ifdef EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC | 
|  | return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) == 0x7c00; | 
|  | #else | 
|  | return (a.x & 0x7fff) == 0x7c00; | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isnan)(const half& a) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | return __hisnan(a); | 
|  | #elif defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | return (numext::bit_cast<numext::uint16_t>(a.x) & 0x7fff) > 0x7c00; | 
|  | #else | 
|  | return (a.x & 0x7fff) > 0x7c00; | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC bool (isfinite)(const half& a) { | 
|  | return !(isinf EIGEN_NOT_A_MACRO (a)) && !(isnan EIGEN_NOT_A_MACRO (a)); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half abs(const half& a) { | 
|  | #if defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | return half(vabsh_f16(a.x)); | 
|  | #else | 
|  | half result; | 
|  | result.x = a.x & 0x7FFF; | 
|  | return result; | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half exp(const half& a) { | 
|  | #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | defined(EIGEN_HIP_DEVICE_COMPILE) | 
|  | return half(hexp(a)); | 
|  | #else | 
|  | return half(::expf(float(a))); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half expm1(const half& a) { | 
|  | return half(numext::expm1(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log(const half& a) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 80000 && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | return half(::hlog(a)); | 
|  | #else | 
|  | return half(::logf(float(a))); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log1p(const half& a) { | 
|  | return half(numext::log1p(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log10(const half& a) { | 
|  | return half(::log10f(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half log2(const half& a) { | 
|  | return half(static_cast<float>(EIGEN_LOG2E) * ::logf(float(a))); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sqrt(const half& a) { | 
|  | #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | defined(EIGEN_HIP_DEVICE_COMPILE) | 
|  | return half(hsqrt(a)); | 
|  | #else | 
|  | return half(::sqrtf(float(a))); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half pow(const half& a, const half& b) { | 
|  | return half(::powf(float(a), float(b))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half sin(const half& a) { | 
|  | return half(::sinf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half cos(const half& a) { | 
|  | return half(::cosf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tan(const half& a) { | 
|  | return half(::tanf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half tanh(const half& a) { | 
|  | return half(::tanhf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half asin(const half& a) { | 
|  | return half(::asinf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half acos(const half& a) { | 
|  | return half(::acosf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half floor(const half& a) { | 
|  | #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ | 
|  | defined(EIGEN_HIP_DEVICE_COMPILE) | 
|  | return half(hfloor(a)); | 
|  | #else | 
|  | return half(::floorf(float(a))); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half ceil(const half& a) { | 
|  | #if (EIGEN_CUDA_SDK_VER >= 80000 && defined EIGEN_CUDA_ARCH && EIGEN_CUDA_ARCH >= 300) || \ | 
|  | defined(EIGEN_HIP_DEVICE_COMPILE) | 
|  | return half(hceil(a)); | 
|  | #else | 
|  | return half(::ceilf(float(a))); | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half rint(const half& a) { | 
|  | return half(::rintf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half round(const half& a) { | 
|  | return half(::roundf(float(a))); | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half fmod(const half& a, const half& b) { | 
|  | return half(::fmodf(float(a), float(b))); | 
|  | } | 
|  |  | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (min)(const half& a, const half& b) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | return __hlt(b, a) ? b : a; | 
|  | #else | 
|  | const float f1 = static_cast<float>(a); | 
|  | const float f2 = static_cast<float>(b); | 
|  | return f2 < f1 ? b : a; | 
|  | #endif | 
|  | } | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC half (max)(const half& a, const half& b) { | 
|  | #if (defined(EIGEN_HAS_CUDA_FP16) && defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 530) || \ | 
|  | (defined(EIGEN_HAS_HIP_FP16) && defined(EIGEN_HIP_DEVICE_COMPILE)) | 
|  | return __hlt(a, b) ? b : a; | 
|  | #else | 
|  | const float f1 = static_cast<float>(a); | 
|  | const float f2 = static_cast<float>(b); | 
|  | return f1 < f2 ? b : a; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_NO_IO | 
|  | EIGEN_ALWAYS_INLINE std::ostream& operator << (std::ostream& os, const half& v) { | 
|  | os << static_cast<float>(v); | 
|  | return os; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } // end namespace half_impl | 
|  |  | 
|  | // import Eigen::half_impl::half into Eigen namespace | 
|  | // using half_impl::half; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<> | 
|  | struct random_default_impl<half, false, false> | 
|  | { | 
|  | static inline half run(const half& x, const half& y) | 
|  | { | 
|  | return x + (y-x) * half(float(std::rand()) / float(RAND_MAX)); | 
|  | } | 
|  | static inline half run() | 
|  | { | 
|  | return run(half(-1.f), half(1.f)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct is_arithmetic<half> { enum { value = true }; }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | template<> struct NumTraits<Eigen::half> | 
|  | : GenericNumTraits<Eigen::half> | 
|  | { | 
|  | enum { | 
|  | IsSigned = true, | 
|  | IsInteger = false, | 
|  | IsComplex = false, | 
|  | RequireInitialization = false | 
|  | }; | 
|  |  | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half epsilon() { | 
|  | return half_impl::raw_uint16_to_half(0x0800); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half dummy_precision() { | 
|  | return half_impl::raw_uint16_to_half(0x211f); //  Eigen::half(1e-2f); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half highest() { | 
|  | return half_impl::raw_uint16_to_half(0x7bff); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half lowest() { | 
|  | return half_impl::raw_uint16_to_half(0xfbff); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half infinity() { | 
|  | return half_impl::raw_uint16_to_half(0x7c00); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC EIGEN_CONSTEXPR static EIGEN_STRONG_INLINE Eigen::half quiet_NaN() { | 
|  | return half_impl::raw_uint16_to_half(0x7e00); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #if defined(EIGEN_HAS_GPU_FP16) || defined(EIGEN_HAS_ARM64_FP16_SCALAR_ARITHMETIC) | 
|  | #pragma pop_macro("EIGEN_CONSTEXPR") | 
|  | #endif | 
|  |  | 
|  | namespace Eigen { | 
|  | namespace numext { | 
|  |  | 
|  | #if defined(EIGEN_GPU_COMPILE_PHASE) | 
|  |  | 
|  | template <> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isnan)(const Eigen::half& h) { | 
|  | return (half_impl::isnan)(h); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isinf)(const Eigen::half& h) { | 
|  | return (half_impl::isinf)(h); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE bool(isfinite)(const Eigen::half& h) { | 
|  | return (half_impl::isfinite)(h); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | template <> | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Eigen::half bit_cast<Eigen::half, uint16_t>(const uint16_t& src) { | 
|  | return Eigen::half(Eigen::half_impl::raw_uint16_to_half(src)); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC uint16_t bit_cast<uint16_t, Eigen::half>(const Eigen::half& src) { | 
|  | return Eigen::half_impl::raw_half_as_uint16(src); | 
|  | } | 
|  |  | 
|  | }  // namespace numext | 
|  | }  // namespace Eigen | 
|  |  | 
|  | // Add the missing shfl* intrinsics. | 
|  | // The __shfl* functions are only valid on HIP or _CUDA_ARCH_ >= 300. | 
|  | //   CUDA defines them for (__CUDA_ARCH__ >= 300 || !defined(__CUDA_ARCH__)) | 
|  | // | 
|  | // HIP and CUDA prior to SDK 9.0 define | 
|  | //    __shfl, __shfl_up, __shfl_down, __shfl_xor for int and float | 
|  | // CUDA since 9.0 deprecates those and instead defines | 
|  | //    __shfl_sync, __shfl_up_sync, __shfl_down_sync, __shfl_xor_sync, | 
|  | //    with native support for __half and __nv_bfloat16 | 
|  | // | 
|  | // Note that the following are __device__ - only functions. | 
|  | #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 300)) \ | 
|  | || defined(EIGEN_HIPCC) | 
|  |  | 
|  | #if defined(EIGEN_HAS_CUDA_FP16) && EIGEN_CUDA_SDK_VER >= 90000 | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_sync(unsigned mask, Eigen::half var, int srcLane, int width=warpSize) { | 
|  | const __half h = var; | 
|  | return static_cast<Eigen::half>(__shfl_sync(mask, h, srcLane, width)); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up_sync(unsigned mask, Eigen::half var, unsigned int delta, int width=warpSize) { | 
|  | const __half h = var; | 
|  | return static_cast<Eigen::half>(__shfl_up_sync(mask, h, delta, width)); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down_sync(unsigned mask, Eigen::half var, unsigned int delta, int width=warpSize) { | 
|  | const __half h = var; | 
|  | return static_cast<Eigen::half>(__shfl_down_sync(mask, h, delta, width)); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor_sync(unsigned mask, Eigen::half var, int laneMask, int width=warpSize) { | 
|  | const __half h = var; | 
|  | return static_cast<Eigen::half>(__shfl_xor_sync(mask, h, laneMask, width)); | 
|  | } | 
|  |  | 
|  | #else // HIP or CUDA SDK < 9.0 | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl(Eigen::half var, int srcLane, int width=warpSize) { | 
|  | const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); | 
|  | return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl(ivar, srcLane, width))); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_up(Eigen::half var, unsigned int delta, int width=warpSize) { | 
|  | const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); | 
|  | return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_up(ivar, delta, width))); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_down(Eigen::half var, unsigned int delta, int width=warpSize) { | 
|  | const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); | 
|  | return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_down(ivar, delta, width))); | 
|  | } | 
|  |  | 
|  | __device__ EIGEN_STRONG_INLINE Eigen::half __shfl_xor(Eigen::half var, int laneMask, int width=warpSize) { | 
|  | const int ivar = static_cast<int>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(var)); | 
|  | return Eigen::numext::bit_cast<Eigen::half>(static_cast<Eigen::numext::uint16_t>(__shfl_xor(ivar, laneMask, width))); | 
|  | } | 
|  |  | 
|  | #endif // HIP vs CUDA | 
|  | #endif // __shfl* | 
|  |  | 
|  | // ldg() has an overload for __half_raw, but we also need one for Eigen::half. | 
|  | #if (defined(EIGEN_CUDACC) && (!defined(EIGEN_CUDA_ARCH) || EIGEN_CUDA_ARCH >= 350)) \ | 
|  | || defined(EIGEN_HIPCC) | 
|  | EIGEN_STRONG_INLINE __device__ Eigen::half __ldg(const Eigen::half* ptr) { | 
|  | return Eigen::half_impl::raw_uint16_to_half(__ldg(reinterpret_cast<const Eigen::numext::uint16_t*>(ptr))); | 
|  | } | 
|  | #endif // __ldg | 
|  |  | 
|  | #if EIGEN_HAS_STD_HASH | 
|  | namespace std { | 
|  | template <> | 
|  | struct hash<Eigen::half> { | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE std::size_t operator()(const Eigen::half& a) const { | 
|  | return static_cast<std::size_t>(Eigen::numext::bit_cast<Eigen::numext::uint16_t>(a)); | 
|  | } | 
|  | }; | 
|  | } // end namespace std | 
|  | #endif | 
|  |  | 
|  | #endif // EIGEN_HALF_H |