| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_PACKET_MATH_SSE_H |
| #define EIGEN_PACKET_MATH_SSE_H |
| |
| #include "../../InternalHeaderCheck.h" |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD |
| #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8 |
| #endif |
| |
| #if !defined(EIGEN_VECTORIZE_AVX) && !defined(EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS) |
| // 32 bits => 8 registers |
| // 64 bits => 16 registers |
| #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*)) |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_FMA |
| #ifndef EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| #define EIGEN_HAS_SINGLE_INSTRUCTION_MADD |
| #endif |
| #endif |
| |
| #if ((defined EIGEN_VECTORIZE_AVX) && (EIGEN_COMP_GNUC_STRICT || EIGEN_COMP_MINGW) && (__GXX_ABI_VERSION < 1004)) || EIGEN_OS_QNX |
| // With GCC's default ABI version, a __m128 or __m256 are the same types and therefore we cannot |
| // have overloads for both types without linking error. |
| // One solution is to increase ABI version using -fabi-version=4 (or greater). |
| // Otherwise, we workaround this inconvenience by wrapping 128bit types into the following helper |
| // structure: |
| typedef eigen_packet_wrapper<__m128> Packet4f; |
| typedef eigen_packet_wrapper<__m128d> Packet2d; |
| #else |
| typedef __m128 Packet4f; |
| typedef __m128d Packet2d; |
| #endif |
| |
| typedef eigen_packet_wrapper<__m128i, 0> Packet4i; |
| typedef eigen_packet_wrapper<__m128i, 1> Packet16b; |
| |
| template<> struct is_arithmetic<__m128> { enum { value = true }; }; |
| template<> struct is_arithmetic<__m128i> { enum { value = true }; }; |
| template<> struct is_arithmetic<__m128d> { enum { value = true }; }; |
| template<> struct is_arithmetic<Packet4i> { enum { value = true }; }; |
| template<> struct is_arithmetic<Packet16b> { enum { value = true }; }; |
| |
| template<int p, int q, int r, int s> |
| struct shuffle_mask{ |
| enum { mask = (s)<<6|(r)<<4|(q)<<2|(p) }; |
| }; |
| |
| // TODO: change the implementation of all swizzle* ops from macro to template, |
| #define vec4f_swizzle1(v,p,q,r,s) \ |
| Packet4f(_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), (shuffle_mask<p,q,r,s>::mask)))) |
| |
| #define vec4i_swizzle1(v,p,q,r,s) \ |
| Packet4i(_mm_shuffle_epi32( v, (shuffle_mask<p,q,r,s>::mask))) |
| |
| #define vec2d_swizzle1(v,p,q) \ |
| Packet2d(_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), (shuffle_mask<2*p,2*p+1,2*q,2*q+1>::mask)))) |
| |
| #define vec4f_swizzle2(a,b,p,q,r,s) \ |
| Packet4f(_mm_shuffle_ps( (a), (b), (shuffle_mask<p,q,r,s>::mask))) |
| |
| #define vec4i_swizzle2(a,b,p,q,r,s) \ |
| Packet4i(_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), (shuffle_mask<p,q,r,s>::mask))))) |
| |
| EIGEN_STRONG_INLINE Packet4f vec4f_movelh(const Packet4f& a, const Packet4f& b) |
| { |
| return Packet4f(_mm_movelh_ps(a,b)); |
| } |
| EIGEN_STRONG_INLINE Packet4f vec4f_movehl(const Packet4f& a, const Packet4f& b) |
| { |
| return Packet4f(_mm_movehl_ps(a,b)); |
| } |
| EIGEN_STRONG_INLINE Packet4f vec4f_unpacklo(const Packet4f& a, const Packet4f& b) |
| { |
| return Packet4f(_mm_unpacklo_ps(a,b)); |
| } |
| EIGEN_STRONG_INLINE Packet4f vec4f_unpackhi(const Packet4f& a, const Packet4f& b) |
| { |
| return Packet4f(_mm_unpackhi_ps(a,b)); |
| } |
| #define vec4f_duplane(a,p) \ |
| vec4f_swizzle2(a,a,p,p,p,p) |
| |
| #define vec2d_swizzle2(a,b,mask) \ |
| Packet2d(_mm_shuffle_pd(a,b,mask)) |
| |
| EIGEN_STRONG_INLINE Packet2d vec2d_unpacklo(const Packet2d& a, const Packet2d& b) |
| { |
| return Packet2d(_mm_unpacklo_pd(a,b)); |
| } |
| EIGEN_STRONG_INLINE Packet2d vec2d_unpackhi(const Packet2d& a, const Packet2d& b) |
| { |
| return Packet2d(_mm_unpackhi_pd(a,b)); |
| } |
| #define vec2d_duplane(a,p) \ |
| vec2d_swizzle2(a,a,(p<<1)|p) |
| |
| #define EIGEN_DECLARE_CONST_Packet4f(NAME,X) \ |
| const Packet4f p4f_##NAME = pset1<Packet4f>(X) |
| |
| #define EIGEN_DECLARE_CONST_Packet2d(NAME,X) \ |
| const Packet2d p2d_##NAME = pset1<Packet2d>(X) |
| |
| #define EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \ |
| const Packet4f p4f_##NAME = pset1frombits<Packet4f>(X) |
| |
| #define EIGEN_DECLARE_CONST_Packet4i(NAME,X) \ |
| const Packet4i p4i_##NAME = pset1<Packet4i>(X) |
| |
| |
| // Use the packet_traits defined in AVX/PacketMath.h instead if we're going |
| // to leverage AVX instructions. |
| #ifndef EIGEN_VECTORIZE_AVX |
| template <> |
| struct packet_traits<float> : default_packet_traits { |
| typedef Packet4f type; |
| typedef Packet4f half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 4, |
| HasHalfPacket = 0, |
| |
| HasCmp = 1, |
| HasDiv = 1, |
| HasReciprocal = EIGEN_FAST_MATH, |
| HasSin = EIGEN_FAST_MATH, |
| HasCos = EIGEN_FAST_MATH, |
| HasLog = 1, |
| HasLog1p = 1, |
| HasExpm1 = 1, |
| HasNdtri = 1, |
| HasExp = 1, |
| HasBessel = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasTanh = EIGEN_FAST_MATH, |
| HasErf = EIGEN_FAST_MATH, |
| HasBlend = 1, |
| HasCeil = 1, |
| HasFloor = 1, |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| HasRound = 1, |
| #endif |
| HasRint = 1 |
| }; |
| }; |
| template <> |
| struct packet_traits<double> : default_packet_traits { |
| typedef Packet2d type; |
| typedef Packet2d half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size=2, |
| HasHalfPacket = 0, |
| |
| HasCmp = 1, |
| HasDiv = 1, |
| HasLog = 1, |
| HasExp = 1, |
| HasSqrt = 1, |
| HasRsqrt = 1, |
| HasBlend = 1, |
| HasFloor = 1, |
| HasCeil = 1, |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| HasRound = 1, |
| #endif |
| HasRint = 1 |
| }; |
| }; |
| template<> struct packet_traits<int> : default_packet_traits |
| { |
| typedef Packet4i type; |
| typedef Packet4i half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size=4, |
| |
| HasShift = 1, |
| HasBlend = 1 |
| }; |
| }; |
| #endif |
| template<> struct packet_traits<bool> : default_packet_traits |
| { |
| typedef Packet16b type; |
| typedef Packet16b half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| HasHalfPacket = 0, |
| size=16, |
| |
| HasAdd = 1, |
| HasSub = 1, |
| HasShift = 0, |
| HasMul = 1, |
| HasNegate = 1, |
| HasAbs = 0, |
| HasAbs2 = 0, |
| HasMin = 0, |
| HasMax = 0, |
| HasConj = 0, |
| HasSqrt = 1 |
| }; |
| }; |
| |
| template<> struct unpacket_traits<Packet4f> { |
| typedef float type; |
| typedef Packet4f half; |
| typedef Packet4i integer_packet; |
| enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| template<> struct unpacket_traits<Packet2d> { |
| typedef double type; |
| typedef Packet2d half; |
| enum {size=2, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| template<> struct unpacket_traits<Packet4i> { |
| typedef int type; |
| typedef Packet4i half; |
| enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| template<> struct unpacket_traits<Packet16b> { |
| typedef bool type; |
| typedef Packet16b half; |
| enum {size=16, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; |
| }; |
| |
| #ifndef EIGEN_VECTORIZE_AVX |
| template<> struct scalar_div_cost<float,true> { enum { value = 7 }; }; |
| template<> struct scalar_div_cost<double,true> { enum { value = 8 }; }; |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps1(from); } |
| template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); } |
| template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); } |
| template<> EIGEN_STRONG_INLINE Packet16b pset1<Packet16b>(const bool& from) { return _mm_set1_epi8(static_cast<char>(from)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pset1frombits<Packet4f>(unsigned int from) { return _mm_castsi128_ps(pset1<Packet4i>(from)); } |
| template<> EIGEN_STRONG_INLINE Packet2d pset1frombits<Packet2d>(uint64_t from) { return _mm_castsi128_pd(_mm_set1_epi64x(from)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f peven_mask(const Packet4f& /*a*/) { return _mm_castsi128_ps(_mm_set_epi32(0, -1, 0, -1)); } |
| template<> EIGEN_STRONG_INLINE Packet4i peven_mask(const Packet4i& /*a*/) { return _mm_set_epi32(0, -1, 0, -1); } |
| template<> EIGEN_STRONG_INLINE Packet2d peven_mask(const Packet2d& /*a*/) { return _mm_castsi128_pd(_mm_set_epi32(0, 0, -1, -1)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pzero(const Packet4f& /*a*/) { return _mm_setzero_ps(); } |
| template<> EIGEN_STRONG_INLINE Packet2d pzero(const Packet2d& /*a*/) { return _mm_setzero_pd(); } |
| template<> EIGEN_STRONG_INLINE Packet4i pzero(const Packet4i& /*a*/) { return _mm_setzero_si128(); } |
| |
| // GCC generates a shufps instruction for _mm_set1_ps/_mm_load1_ps instead of the more efficient pshufd instruction. |
| // However, using inrinsics for pset1 makes gcc to generate crappy code in some cases (see bug 203) |
| // Using inline assembly is also not an option because then gcc fails to reorder properly the instructions. |
| // Therefore, we introduced the pload1 functions to be used in product kernels for which bug 203 does not apply. |
| // Also note that with AVX, we want it to generate a vbroadcastss. |
| #if EIGEN_COMP_GNUC_STRICT && (!defined __AVX__) |
| template<> EIGEN_STRONG_INLINE Packet4f pload1<Packet4f>(const float *from) { |
| return vec4f_swizzle1(_mm_load_ss(from),0,0,0,0); |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet4f plset<Packet4f>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); } |
| template<> EIGEN_STRONG_INLINE Packet2d plset<Packet2d>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); } |
| template<> EIGEN_STRONG_INLINE Packet4i plset<Packet4i>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet16b padd<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet16b psub<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b); |
| template<> EIGEN_STRONG_INLINE Packet4f paddsub<Packet4f>(const Packet4f& a, const Packet4f& b) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE3 |
| return _mm_addsub_ps(a,b); |
| #else |
| const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x0,0x80000000,0x0)); |
| return padd(a, pxor(mask, b)); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& , const Packet2d& ); |
| template<> EIGEN_STRONG_INLINE Packet2d paddsub<Packet2d>(const Packet2d& a, const Packet2d& b) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE3 |
| return _mm_addsub_pd(a,b); |
| #else |
| const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x0)); |
| return padd(a, pxor(mask, b)); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) |
| { |
| const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000)); |
| return _mm_xor_ps(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a) |
| { |
| const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000)); |
| return _mm_xor_pd(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) |
| { |
| return psub(Packet4i(_mm_setr_epi32(0,0,0,0)), a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet16b pnegate(const Packet16b& a) |
| { |
| return psub(pset1<Packet16b>(false), a); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; } |
| template<> EIGEN_STRONG_INLINE Packet2d pconj(const Packet2d& a) { return a; } |
| template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_mullo_epi32(a,b); |
| #else |
| // this version is slightly faster than 4 scalar products |
| return vec4i_swizzle1( |
| vec4i_swizzle2( |
| _mm_mul_epu32(a,b), |
| _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2), |
| vec4i_swizzle1(b,1,0,3,2)), |
| 0,2,0,2), |
| 0,2,1,3); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet16b pmul<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); } |
| |
| // for some weird raisons, it has to be overloaded for packet of integers |
| template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); } |
| #ifdef EIGEN_VECTORIZE_FMA |
| template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmadd_ps(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet2d pmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmadd_pd(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet4f pmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fmsub_ps(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet2d pmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fmsub_pd(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet4f pnmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fnmadd_ps(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet2d pnmadd(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fnmadd_pd(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet4f pnmsub(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return _mm_fnmsub_ps(a,b,c); } |
| template<> EIGEN_STRONG_INLINE Packet2d pnmsub(const Packet2d& a, const Packet2d& b, const Packet2d& c) { return _mm_fnmsub_pd(a,b,c); } |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| template<> EIGEN_DEVICE_FUNC inline Packet4f pselect(const Packet4f& mask, const Packet4f& a, const Packet4f& b) { |
| return _mm_blendv_ps(b,a,mask); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline Packet4i pselect(const Packet4i& mask, const Packet4i& a, const Packet4i& b) { |
| return _mm_castps_si128(_mm_blendv_ps(_mm_castsi128_ps(b),_mm_castsi128_ps(a),_mm_castsi128_ps(mask))); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline Packet2d pselect(const Packet2d& mask, const Packet2d& a, const Packet2d& b) { return _mm_blendv_pd(b,a,mask); } |
| |
| template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) { |
| return _mm_blendv_epi8(b,a,mask); |
| } |
| #else |
| template<> EIGEN_DEVICE_FUNC inline Packet16b pselect(const Packet16b& mask, const Packet16b& a, const Packet16b& b) { |
| Packet16b a_part = _mm_and_si128(mask, a); |
| Packet16b b_part = _mm_andnot_si128(mask, b); |
| return _mm_or_si128(a_part, b_part); |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet4i ptrue<Packet4i>(const Packet4i& a) { return _mm_cmpeq_epi32(a, a); } |
| template<> EIGEN_STRONG_INLINE Packet16b ptrue<Packet16b>(const Packet16b& a) { return _mm_cmpeq_epi8(a, a); } |
| template<> EIGEN_STRONG_INLINE Packet4f |
| ptrue<Packet4f>(const Packet4f& a) { |
| Packet4i b = _mm_castps_si128(a); |
| return _mm_castsi128_ps(_mm_cmpeq_epi32(b, b)); |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d |
| ptrue<Packet2d>(const Packet2d& a) { |
| Packet4i b = _mm_castpd_si128(a); |
| return _mm_castsi128_pd(_mm_cmpeq_epi32(b, b)); |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet16b pand<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_and_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet16b por<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_or_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet16b pxor<Packet16b>(const Packet16b& a, const Packet16b& b) { return _mm_xor_si128(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(b,a); } |
| template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(b,a); } |
| template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(b,a); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pcmp_le(const Packet4f& a, const Packet4f& b) { return _mm_cmple_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt(const Packet4f& a, const Packet4f& b) { return _mm_cmplt_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4f pcmp_lt_or_nan(const Packet4f& a, const Packet4f& b) { return _mm_cmpnge_ps(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4f pcmp_eq(const Packet4f& a, const Packet4f& b) { return _mm_cmpeq_ps(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pcmp_le(const Packet2d& a, const Packet2d& b) { return _mm_cmple_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt(const Packet2d& a, const Packet2d& b) { return _mm_cmplt_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pcmp_lt_or_nan(const Packet2d& a, const Packet2d& b) { return _mm_cmpnge_pd(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet2d pcmp_eq(const Packet2d& a, const Packet2d& b) { return _mm_cmpeq_pd(a,b); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4i pcmp_lt(const Packet4i& a, const Packet4i& b) { return _mm_cmplt_epi32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i pcmp_eq(const Packet4i& a, const Packet4i& b) { return _mm_cmpeq_epi32(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet16b pcmp_eq(const Packet16b& a, const Packet16b& b) { return _mm_cmpeq_epi8(a,b); } |
| template<> EIGEN_STRONG_INLINE Packet4i pcmp_le(const Packet4i& a, const Packet4i& b) { return por(pcmp_lt(a,b), pcmp_eq(a,b)); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // There appears to be a bug in GCC, by which the optimizer may |
| // flip the argument order in calls to _mm_min_ps, so we have to |
| // resort to inline ASM here. This is supposed to be fixed in gcc6.3, |
| // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 |
| #ifdef EIGEN_VECTORIZE_AVX |
| Packet4f res; |
| asm("vminps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| #else |
| Packet4f res = b; |
| asm("minps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); |
| #endif |
| return res; |
| #else |
| // Arguments are reversed to match NaN propagation behavior of std::min. |
| return _mm_min_ps(b, a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // There appears to be a bug in GCC, by which the optimizer may |
| // flip the argument order in calls to _mm_min_pd, so we have to |
| // resort to inline ASM here. This is supposed to be fixed in gcc6.3, |
| // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 |
| #ifdef EIGEN_VECTORIZE_AVX |
| Packet2d res; |
| asm("vminpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| #else |
| Packet2d res = b; |
| asm("minpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); |
| #endif |
| return res; |
| #else |
| // Arguments are reversed to match NaN propagation behavior of std::min. |
| return _mm_min_pd(b, a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_min_epi32(a,b); |
| #else |
| // after some bench, this version *is* faster than a scalar implementation |
| Packet4i mask = _mm_cmplt_epi32(a,b); |
| return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); |
| #endif |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // There appears to be a bug in GCC, by which the optimizer may |
| // flip the argument order in calls to _mm_max_ps, so we have to |
| // resort to inline ASM here. This is supposed to be fixed in gcc6.3, |
| // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 |
| #ifdef EIGEN_VECTORIZE_AVX |
| Packet4f res; |
| asm("vmaxps %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| #else |
| Packet4f res = b; |
| asm("maxps %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); |
| #endif |
| return res; |
| #else |
| // Arguments are reversed to match NaN propagation behavior of std::max. |
| return _mm_max_ps(b, a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { |
| #if EIGEN_COMP_GNUC && EIGEN_COMP_GNUC < 63 |
| // There appears to be a bug in GCC, by which the optimizer may |
| // flip the argument order in calls to _mm_max_pd, so we have to |
| // resort to inline ASM here. This is supposed to be fixed in gcc6.3, |
| // see also: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867 |
| #ifdef EIGEN_VECTORIZE_AVX |
| Packet2d res; |
| asm("vmaxpd %[a], %[b], %[res]" : [res] "=x" (res) : [a] "x" (a), [b] "x" (b)); |
| #else |
| Packet2d res = b; |
| asm("maxpd %[a], %[res]" : [res] "+x" (res) : [a] "x" (a)); |
| #endif |
| return res; |
| #else |
| // Arguments are reversed to match NaN propagation behavior of std::max. |
| return _mm_max_pd(b, a); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_max_epi32(a,b); |
| #else |
| // after some bench, this version *is* faster than a scalar implementation |
| Packet4i mask = _mm_cmpgt_epi32(a,b); |
| return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b)); |
| #endif |
| } |
| |
| template <typename Packet, typename Op> |
| EIGEN_STRONG_INLINE Packet pminmax_propagate_numbers(const Packet& a, const Packet& b, Op op) { |
| // In this implementation, we take advantage of the fact that pmin/pmax for SSE |
| // always return a if either a or b is NaN. |
| Packet not_nan_mask_a = pcmp_eq(a, a); |
| Packet m = op(a, b); |
| return pselect<Packet>(not_nan_mask_a, m, b); |
| } |
| |
| template <typename Packet, typename Op> |
| EIGEN_STRONG_INLINE Packet pminmax_propagate_nan(const Packet& a, const Packet& b, Op op) { |
| // In this implementation, we take advantage of the fact that pmin/pmax for SSE |
| // always return a if either a or b is NaN. |
| Packet not_nan_mask_a = pcmp_eq(a, a); |
| Packet m = op(b, a); |
| return pselect<Packet>(not_nan_mask_a, m, a); |
| } |
| |
| // Add specializations for min/max with prescribed NaN progation. |
| template<> |
| EIGEN_STRONG_INLINE Packet4f pmin<PropagateNumbers, Packet4f>(const Packet4f& a, const Packet4f& b) { |
| return pminmax_propagate_numbers(a, b, pmin<Packet4f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet2d pmin<PropagateNumbers, Packet2d>(const Packet2d& a, const Packet2d& b) { |
| return pminmax_propagate_numbers(a, b, pmin<Packet2d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4f pmax<PropagateNumbers, Packet4f>(const Packet4f& a, const Packet4f& b) { |
| return pminmax_propagate_numbers(a, b, pmax<Packet4f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet2d pmax<PropagateNumbers, Packet2d>(const Packet2d& a, const Packet2d& b) { |
| return pminmax_propagate_numbers(a, b, pmax<Packet2d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4f pmin<PropagateNaN, Packet4f>(const Packet4f& a, const Packet4f& b) { |
| return pminmax_propagate_nan(a, b, pmin<Packet4f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet2d pmin<PropagateNaN, Packet2d>(const Packet2d& a, const Packet2d& b) { |
| return pminmax_propagate_nan(a, b, pmin<Packet2d>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet4f pmax<PropagateNaN, Packet4f>(const Packet4f& a, const Packet4f& b) { |
| return pminmax_propagate_nan(a, b, pmax<Packet4f>); |
| } |
| template<> |
| EIGEN_STRONG_INLINE Packet2d pmax<PropagateNaN, Packet2d>(const Packet2d& a, const Packet2d& b) { |
| return pminmax_propagate_nan(a, b, pmax<Packet2d>); |
| } |
| |
| template<int N> EIGEN_STRONG_INLINE Packet4i parithmetic_shift_right(const Packet4i& a) { return _mm_srai_epi32(a,N); } |
| template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_right (const Packet4i& a) { return _mm_srli_epi32(a,N); } |
| template<int N> EIGEN_STRONG_INLINE Packet4i plogical_shift_left (const Packet4i& a) { return _mm_slli_epi32(a,N); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) |
| { |
| const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF)); |
| return _mm_and_ps(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a) |
| { |
| const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF)); |
| return _mm_and_pd(a,mask); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) |
| { |
| #ifdef EIGEN_VECTORIZE_SSSE3 |
| return _mm_abs_epi32(a); |
| #else |
| Packet4i aux = _mm_srai_epi32(a,31); |
| return _mm_sub_epi32(_mm_xor_si128(a,aux),aux); |
| #endif |
| } |
| |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| template<> EIGEN_STRONG_INLINE Packet4f pround<Packet4f>(const Packet4f& a) |
| { |
| // Unfortunately _mm_round_ps doesn't have a rounding mode to implement numext::round. |
| const Packet4f mask = pset1frombits<Packet4f>(0x80000000u); |
| const Packet4f prev0dot5 = pset1frombits<Packet4f>(0x3EFFFFFFu); |
| return _mm_round_ps(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pround<Packet2d>(const Packet2d& a) |
| { |
| const Packet2d mask = _mm_castsi128_pd(_mm_set_epi64x(0x8000000000000000ull, 0x8000000000000000ull)); |
| const Packet2d prev0dot5 = _mm_castsi128_pd(_mm_set_epi64x(0x3FDFFFFFFFFFFFFFull, 0x3FDFFFFFFFFFFFFFull)); |
| return _mm_round_pd(padd(por(pand(a, mask), prev0dot5), a), _MM_FROUND_TO_ZERO); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f print<Packet4f>(const Packet4f& a) { return _mm_round_ps(a, _MM_FROUND_CUR_DIRECTION); } |
| template<> EIGEN_STRONG_INLINE Packet2d print<Packet2d>(const Packet2d& a) { return _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) { return _mm_ceil_ps(a); } |
| template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) { return _mm_ceil_pd(a); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) { return _mm_floor_ps(a); } |
| template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) { return _mm_floor_pd(a); } |
| #else |
| template<> EIGEN_STRONG_INLINE Packet4f print(const Packet4f& a) { |
| // Adds and subtracts signum(a) * 2^23 to force rounding. |
| const Packet4f limit = pset1<Packet4f>(static_cast<float>(1<<23)); |
| const Packet4f abs_a = pabs(a); |
| Packet4f r = padd(abs_a, limit); |
| // Don't compile-away addition and subtraction. |
| EIGEN_OPTIMIZATION_BARRIER(r); |
| r = psub(r, limit); |
| // If greater than limit, simply return a. Otherwise, account for sign. |
| r = pselect(pcmp_lt(abs_a, limit), |
| pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); |
| return r; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d print(const Packet2d& a) { |
| // Adds and subtracts signum(a) * 2^52 to force rounding. |
| const Packet2d limit = pset1<Packet2d>(static_cast<double>(1ull<<52)); |
| const Packet2d abs_a = pabs(a); |
| Packet2d r = padd(abs_a, limit); |
| // Don't compile-away addition and subtraction. |
| EIGEN_OPTIMIZATION_BARRIER(r); |
| r = psub(r, limit); |
| // If greater than limit, simply return a. Otherwise, account for sign. |
| r = pselect(pcmp_lt(abs_a, limit), |
| pselect(pcmp_lt(a, pzero(a)), pnegate(r), r), a); |
| return r; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pfloor<Packet4f>(const Packet4f& a) |
| { |
| const Packet4f cst_1 = pset1<Packet4f>(1.0f); |
| Packet4f tmp = print<Packet4f>(a); |
| // If greater, subtract one. |
| Packet4f mask = _mm_cmpgt_ps(tmp, a); |
| mask = pand(mask, cst_1); |
| return psub(tmp, mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pfloor<Packet2d>(const Packet2d& a) |
| { |
| const Packet2d cst_1 = pset1<Packet2d>(1.0); |
| Packet2d tmp = print<Packet2d>(a); |
| // If greater, subtract one. |
| Packet2d mask = _mm_cmpgt_pd(tmp, a); |
| mask = pand(mask, cst_1); |
| return psub(tmp, mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pceil<Packet4f>(const Packet4f& a) |
| { |
| const Packet4f cst_1 = pset1<Packet4f>(1.0f); |
| Packet4f tmp = print<Packet4f>(a); |
| // If smaller, add one. |
| Packet4f mask = _mm_cmplt_ps(tmp, a); |
| mask = pand(mask, cst_1); |
| return padd(tmp, mask); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pceil<Packet2d>(const Packet2d& a) |
| { |
| const Packet2d cst_1 = pset1<Packet2d>(1.0); |
| Packet2d tmp = print<Packet2d>(a); |
| // If smaller, add one. |
| Packet2d mask = _mm_cmplt_pd(tmp, a); |
| mask = pand(mask, cst_1); |
| return padd(tmp, mask); |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); } |
| template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); } |
| template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); } |
| template<> EIGEN_STRONG_INLINE Packet16b pload<Packet16b>(const bool* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const __m128i*>(from)); } |
| |
| #if EIGEN_COMP_MSVC |
| template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { |
| EIGEN_DEBUG_UNALIGNED_LOAD |
| return _mm_loadu_ps(from); |
| } |
| #else |
| // NOTE: with the code below, MSVC's compiler crashes! |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) |
| { |
| EIGEN_DEBUG_UNALIGNED_LOAD |
| return _mm_loadu_ps(from); |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) |
| { |
| EIGEN_DEBUG_UNALIGNED_LOAD |
| return _mm_loadu_pd(from); |
| } |
| template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) |
| { |
| EIGEN_DEBUG_UNALIGNED_LOAD |
| return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| template<> EIGEN_STRONG_INLINE Packet16b ploadu<Packet16b>(const bool* from) { |
| EIGEN_DEBUG_UNALIGNED_LOAD |
| return _mm_loadu_si128(reinterpret_cast<const __m128i*>(from)); |
| } |
| |
| |
| template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from) |
| { |
| return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1); |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from) |
| { return pset1<Packet2d>(from[0]); } |
| template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from) |
| { |
| Packet4i tmp; |
| tmp = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(from)); |
| return vec4i_swizzle1(tmp, 0, 0, 1, 1); |
| } |
| |
| // Loads 8 bools from memory and returns the packet |
| // {b0, b0, b1, b1, b2, b2, b3, b3, b4, b4, b5, b5, b6, b6, b7, b7} |
| template<> EIGEN_STRONG_INLINE Packet16b ploaddup<Packet16b>(const bool* from) |
| { |
| __m128i tmp = _mm_castpd_si128(pload1<Packet2d>(reinterpret_cast<const double*>(from))); |
| return _mm_unpacklo_epi8(tmp, tmp); |
| } |
| |
| // Loads 4 bools from memory and returns the packet |
| // {b0, b0 b0, b0, b1, b1, b1, b1, b2, b2, b2, b2, b3, b3, b3, b3} |
| template<> EIGEN_STRONG_INLINE Packet16b |
| ploadquad<Packet16b>(const bool* from) { |
| __m128i tmp = _mm_castps_si128(pload1<Packet4f>(reinterpret_cast<const float*>(from))); |
| tmp = _mm_unpacklo_epi8(tmp, tmp); |
| return _mm_unpacklo_epi16(tmp, tmp); |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } |
| template<> EIGEN_STRONG_INLINE void pstore<bool>(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<__m128i*>(to), from); } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_pd(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_ps(to, from); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } |
| template<> EIGEN_STRONG_INLINE void pstoreu<bool>(bool* to, const Packet16b& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_storeu_si128(reinterpret_cast<__m128i*>(to), from); } |
| |
| template<> EIGEN_DEVICE_FUNC inline Packet4f pgather<float, Packet4f>(const float* from, Index stride) |
| { |
| return _mm_set_ps(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| template<> EIGEN_DEVICE_FUNC inline Packet2d pgather<double, Packet2d>(const double* from, Index stride) |
| { |
| return _mm_set_pd(from[1*stride], from[0*stride]); |
| } |
| template<> EIGEN_DEVICE_FUNC inline Packet4i pgather<int, Packet4i>(const int* from, Index stride) |
| { |
| return _mm_set_epi32(from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline Packet16b pgather<bool, Packet16b>(const bool* from, Index stride) |
| { |
| return _mm_set_epi8(from[15*stride], from[14*stride], from[13*stride], from[12*stride], |
| from[11*stride], from[10*stride], from[9*stride], from[8*stride], |
| from[7*stride], from[6*stride], from[5*stride], from[4*stride], |
| from[3*stride], from[2*stride], from[1*stride], from[0*stride]); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<float, Packet4f>(float* to, const Packet4f& from, Index stride) |
| { |
| to[stride*0] = _mm_cvtss_f32(from); |
| to[stride*1] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 1)); |
| to[stride*2] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 2)); |
| to[stride*3] = _mm_cvtss_f32(_mm_shuffle_ps(from, from, 3)); |
| } |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<double, Packet2d>(double* to, const Packet2d& from, Index stride) |
| { |
| to[stride*0] = _mm_cvtsd_f64(from); |
| to[stride*1] = _mm_cvtsd_f64(_mm_shuffle_pd(from, from, 1)); |
| } |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<int, Packet4i>(int* to, const Packet4i& from, Index stride) |
| { |
| to[stride*0] = _mm_cvtsi128_si32(from); |
| to[stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1)); |
| to[stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2)); |
| to[stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3)); |
| } |
| template<> EIGEN_DEVICE_FUNC inline void pscatter<bool, Packet16b>(bool* to, const Packet16b& from, Index stride) |
| { |
| to[4*stride*0] = _mm_cvtsi128_si32(from); |
| to[4*stride*1] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 1)); |
| to[4*stride*2] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 2)); |
| to[4*stride*3] = _mm_cvtsi128_si32(_mm_shuffle_epi32(from, 3)); |
| } |
| |
| |
| // some compilers might be tempted to perform multiple moves instead of using a vector path. |
| template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a) |
| { |
| Packet4f pa = _mm_set_ss(a); |
| pstore(to, Packet4f(vec4f_swizzle1(pa,0,0,0,0))); |
| } |
| // some compilers might be tempted to perform multiple moves instead of using a vector path. |
| template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a) |
| { |
| Packet2d pa = _mm_set_sd(a); |
| pstore(to, Packet2d(vec2d_swizzle1(pa,0,0))); |
| } |
| |
| #if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900 |
| typedef const void * SsePrefetchPtrType; |
| #else |
| typedef const char * SsePrefetchPtrType; |
| #endif |
| |
| #ifndef EIGEN_VECTORIZE_AVX |
| template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((SsePrefetchPtrType)(addr), _MM_HINT_T0); } |
| #endif |
| |
| #if EIGEN_COMP_MSVC_STRICT && EIGEN_OS_WIN64 |
| // The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 |
| // Direct of the struct members fixed bug #62. |
| template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; } |
| template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; } |
| template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } |
| #elif EIGEN_COMP_MSVC_STRICT |
| // The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010 |
| template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; } |
| template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; } |
| template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; } |
| #else |
| template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); } |
| template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); } |
| template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); } |
| #endif |
| template<> EIGEN_STRONG_INLINE bool pfirst<Packet16b>(const Packet16b& a) { int x = _mm_cvtsi128_si32(a); return static_cast<bool>(x & 1); } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) { return _mm_shuffle_ps(a,a,0x1B); } |
| template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a) { return _mm_shuffle_pd(a,a,0x1); } |
| template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) { return _mm_shuffle_epi32(a,0x1B); } |
| template<> EIGEN_STRONG_INLINE Packet16b preverse(const Packet16b& a) { |
| #ifdef EIGEN_VECTORIZE_SSSE3 |
| __m128i mask = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15); |
| return _mm_shuffle_epi8(a, mask); |
| #else |
| Packet16b tmp = _mm_shuffle_epi32(a, _MM_SHUFFLE(0, 1, 2, 3)); |
| tmp = _mm_shufflehi_epi16(_mm_shufflelo_epi16(tmp, _MM_SHUFFLE(2, 3, 0, 1)), _MM_SHUFFLE(2, 3, 0, 1)); |
| return _mm_or_si128(_mm_slli_epi16(tmp, 8), _mm_srli_epi16(tmp, 8)); |
| #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pfrexp<Packet4f>(const Packet4f& a, Packet4f& exponent) { |
| return pfrexp_generic(a,exponent); |
| } |
| |
| // Extract exponent without existence of Packet2l. |
| template<> |
| EIGEN_STRONG_INLINE |
| Packet2d pfrexp_generic_get_biased_exponent(const Packet2d& a) { |
| const Packet2d cst_exp_mask = pset1frombits<Packet2d>(static_cast<uint64_t>(0x7ff0000000000000ull)); |
| __m128i a_expo = _mm_srli_epi64(_mm_castpd_si128(pand(a, cst_exp_mask)), 52); |
| return _mm_cvtepi32_pd(vec4i_swizzle1(a_expo, 0, 2, 1, 3)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet2d pfrexp<Packet2d>(const Packet2d& a, Packet2d& exponent) { |
| return pfrexp_generic(a, exponent); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4f pldexp<Packet4f>(const Packet4f& a, const Packet4f& exponent) { |
| return pldexp_generic(a,exponent); |
| } |
| |
| // We specialize pldexp here, since the generic implementation uses Packet2l, which is not well |
| // supported by SSE, and has more range than is needed for exponents. |
| template<> EIGEN_STRONG_INLINE Packet2d pldexp<Packet2d>(const Packet2d& a, const Packet2d& exponent) { |
| // Clamp exponent to [-2099, 2099] |
| const Packet2d max_exponent = pset1<Packet2d>(2099.0); |
| const Packet2d e = pmin(pmax(exponent, pnegate(max_exponent)), max_exponent); |
| |
| // Convert e to integer and swizzle to low-order bits. |
| const Packet4i ei = vec4i_swizzle1(_mm_cvtpd_epi32(e), 0, 3, 1, 3); |
| |
| // Split 2^e into four factors and multiply: |
| const Packet4i bias = _mm_set_epi32(0, 1023, 0, 1023); |
| Packet4i b = parithmetic_shift_right<2>(ei); // floor(e/4) |
| Packet2d c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52)); // 2^b |
| Packet2d out = pmul(pmul(pmul(a, c), c), c); // a * 2^(3b) |
| b = psub(psub(psub(ei, b), b), b); // e - 3b |
| c = _mm_castsi128_pd(_mm_slli_epi64(padd(b, bias), 52)); // 2^(e - 3b) |
| out = pmul(out, c); // a * 2^e |
| return out; |
| } |
| |
| // with AVX, the default implementations based on pload1 are faster |
| #ifndef __AVX__ |
| template<> EIGEN_STRONG_INLINE void |
| pbroadcast4<Packet4f>(const float *a, |
| Packet4f& a0, Packet4f& a1, Packet4f& a2, Packet4f& a3) |
| { |
| a3 = pload<Packet4f>(a); |
| a0 = vec4f_swizzle1(a3, 0,0,0,0); |
| a1 = vec4f_swizzle1(a3, 1,1,1,1); |
| a2 = vec4f_swizzle1(a3, 2,2,2,2); |
| a3 = vec4f_swizzle1(a3, 3,3,3,3); |
| } |
| template<> EIGEN_STRONG_INLINE void |
| pbroadcast4<Packet2d>(const double *a, |
| Packet2d& a0, Packet2d& a1, Packet2d& a2, Packet2d& a3) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE3 |
| a0 = _mm_loaddup_pd(a+0); |
| a1 = _mm_loaddup_pd(a+1); |
| a2 = _mm_loaddup_pd(a+2); |
| a3 = _mm_loaddup_pd(a+3); |
| #else |
| a1 = pload<Packet2d>(a); |
| a0 = vec2d_swizzle1(a1, 0,0); |
| a1 = vec2d_swizzle1(a1, 1,1); |
| a3 = pload<Packet2d>(a+2); |
| a2 = vec2d_swizzle1(a3, 0,0); |
| a3 = vec2d_swizzle1(a3, 1,1); |
| #endif |
| } |
| #endif |
| |
| EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs) |
| { |
| vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55)); |
| vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA)); |
| vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF)); |
| vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00)); |
| } |
| |
| template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a) |
| { |
| // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures |
| // (from Nehalem to Haswell) |
| // #ifdef EIGEN_VECTORIZE_SSE3 |
| // Packet4f tmp = _mm_add_ps(a, vec4f_swizzle1(a,2,3,2,3)); |
| // return pfirst<Packet4f>(_mm_hadd_ps(tmp, tmp)); |
| // #else |
| Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a)); |
| return pfirst<Packet4f>(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); |
| // #endif |
| } |
| |
| template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) |
| { |
| // Disable SSE3 _mm_hadd_pd that is extremely slow on all existing Intel's architectures |
| // (from Nehalem to Haswell) |
| // #ifdef EIGEN_VECTORIZE_SSE3 |
| // return pfirst<Packet2d>(_mm_hadd_pd(a, a)); |
| // #else |
| return pfirst<Packet2d>(_mm_add_sd(a, _mm_unpackhi_pd(a,a))); |
| // #endif |
| } |
| |
| #ifdef EIGEN_VECTORIZE_SSSE3 |
| template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a) |
| { |
| Packet4i tmp0 = _mm_hadd_epi32(a,a); |
| return pfirst<Packet4i>(_mm_hadd_epi32(tmp0,tmp0)); |
| } |
| |
| #else |
| template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a) |
| { |
| Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a)); |
| return pfirst(tmp) + pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1)); |
| } |
| #endif |
| |
| template<> EIGEN_STRONG_INLINE bool predux<Packet16b>(const Packet16b& a) { |
| Packet4i tmp = _mm_or_si128(a, _mm_unpackhi_epi64(a,a)); |
| return (pfirst(tmp) != 0) || (pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1)) != 0); |
| } |
| |
| // Other reduction functions: |
| |
| |
| // mul |
| template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a) |
| { |
| Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a)); |
| return pfirst<Packet4f>(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a) |
| { |
| return pfirst<Packet2d>(_mm_mul_sd(a, _mm_unpackhi_pd(a,a))); |
| } |
| template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a) |
| { |
| // after some experiments, it is seems this is the fastest way to implement it |
| // for GCC (eg., reusing pmul is very slow !) |
| // TODO try to call _mm_mul_epu32 directly |
| EIGEN_ALIGN16 int aux[4]; |
| pstore(aux, a); |
| return (aux[0] * aux[1]) * (aux[2] * aux[3]); |
| } |
| |
| template<> EIGEN_STRONG_INLINE bool predux_mul<Packet16b>(const Packet16b& a) { |
| Packet4i tmp = _mm_and_si128(a, _mm_unpackhi_epi64(a,a)); |
| return ((pfirst<Packet4i>(tmp) == 0x01010101) && |
| (pfirst<Packet4i>(_mm_shuffle_epi32(tmp, 1)) == 0x01010101)); |
| } |
| |
| // min |
| template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a) |
| { |
| Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a)); |
| return pfirst<Packet4f>(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a) |
| { |
| return pfirst<Packet2d>(_mm_min_sd(a, _mm_unpackhi_pd(a,a))); |
| } |
| template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| Packet4i tmp = _mm_min_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); |
| return pfirst<Packet4i>(_mm_min_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); |
| #else |
| // after some experiments, it is seems this is the fastest way to implement it |
| // for GCC (eg., it does not like using std::min after the pstore !!) |
| EIGEN_ALIGN16 int aux[4]; |
| pstore(aux, a); |
| int aux0 = aux[0]<aux[1] ? aux[0] : aux[1]; |
| int aux2 = aux[2]<aux[3] ? aux[2] : aux[3]; |
| return aux0<aux2 ? aux0 : aux2; |
| #endif // EIGEN_VECTORIZE_SSE4_1 |
| } |
| |
| // max |
| template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a) |
| { |
| Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a)); |
| return pfirst<Packet4f>(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1))); |
| } |
| template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a) |
| { |
| return pfirst<Packet2d>(_mm_max_sd(a, _mm_unpackhi_pd(a,a))); |
| } |
| template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a) |
| { |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| Packet4i tmp = _mm_max_epi32(a, _mm_shuffle_epi32(a, _MM_SHUFFLE(0,0,3,2))); |
| return pfirst<Packet4i>(_mm_max_epi32(tmp,_mm_shuffle_epi32(tmp, 1))); |
| #else |
| // after some experiments, it is seems this is the fastest way to implement it |
| // for GCC (eg., it does not like using std::min after the pstore !!) |
| EIGEN_ALIGN16 int aux[4]; |
| pstore(aux, a); |
| int aux0 = aux[0]>aux[1] ? aux[0] : aux[1]; |
| int aux2 = aux[2]>aux[3] ? aux[2] : aux[3]; |
| return aux0>aux2 ? aux0 : aux2; |
| #endif // EIGEN_VECTORIZE_SSE4_1 |
| } |
| |
| // not needed yet |
| // template<> EIGEN_STRONG_INLINE bool predux_all(const Packet4f& x) |
| // { |
| // return _mm_movemask_ps(x) == 0xF; |
| // } |
| |
| template<> EIGEN_STRONG_INLINE bool predux_any(const Packet4f& x) |
| { |
| return _mm_movemask_ps(x) != 0x0; |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet4f,4>& kernel) { |
| _MM_TRANSPOSE4_PS(kernel.packet[0], kernel.packet[1], kernel.packet[2], kernel.packet[3]); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet2d,2>& kernel) { |
| __m128d tmp = _mm_unpackhi_pd(kernel.packet[0], kernel.packet[1]); |
| kernel.packet[0] = _mm_unpacklo_pd(kernel.packet[0], kernel.packet[1]); |
| kernel.packet[1] = tmp; |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet4i,4>& kernel) { |
| __m128i T0 = _mm_unpacklo_epi32(kernel.packet[0], kernel.packet[1]); |
| __m128i T1 = _mm_unpacklo_epi32(kernel.packet[2], kernel.packet[3]); |
| __m128i T2 = _mm_unpackhi_epi32(kernel.packet[0], kernel.packet[1]); |
| __m128i T3 = _mm_unpackhi_epi32(kernel.packet[2], kernel.packet[3]); |
| |
| kernel.packet[0] = _mm_unpacklo_epi64(T0, T1); |
| kernel.packet[1] = _mm_unpackhi_epi64(T0, T1); |
| kernel.packet[2] = _mm_unpacklo_epi64(T2, T3); |
| kernel.packet[3] = _mm_unpackhi_epi64(T2, T3); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet16b,4>& kernel) { |
| __m128i T0 = _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]); |
| __m128i T1 = _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]); |
| __m128i T2 = _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]); |
| __m128i T3 = _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]); |
| kernel.packet[0] = _mm_unpacklo_epi16(T0, T2); |
| kernel.packet[1] = _mm_unpackhi_epi16(T0, T2); |
| kernel.packet[2] = _mm_unpacklo_epi16(T1, T3); |
| kernel.packet[3] = _mm_unpackhi_epi16(T1, T3); |
| } |
| |
| EIGEN_DEVICE_FUNC inline void |
| ptranspose(PacketBlock<Packet16b,16>& kernel) { |
| // If we number the elements in the input thus: |
| // kernel.packet[ 0] = {00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0a, 0b, 0c, 0d, 0e, 0f} |
| // kernel.packet[ 1] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f} |
| // ... |
| // kernel.packet[15] = {f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, fa, fb, fc, fd, fe, ff}, |
| // |
| // the desired output is: |
| // kernel.packet[ 0] = {00, 10, 20, 30, 40, 50, 60, 70, 80, 90, a0, b0, c0, d0, e0, f0} |
| // kernel.packet[ 1] = {01, 11, 21, 31, 41, 51, 61, 71, 81, 91, a1, b1, c1, d1, e1, f1} |
| // ... |
| // kernel.packet[15] = {0f, 1f, 2f, 3f, 4f, 5f, 6f, 7f, 8f, 9f, af, bf, cf, df, ef, ff}, |
| __m128i t0 = _mm_unpacklo_epi8(kernel.packet[0], kernel.packet[1]); // 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17 |
| __m128i t1 = _mm_unpackhi_epi8(kernel.packet[0], kernel.packet[1]); // 08 18 09 19 0a 1a 0b 1b 0c 1c 0d 1d 0e 1e 0f 1f |
| __m128i t2 = _mm_unpacklo_epi8(kernel.packet[2], kernel.packet[3]); // 20 30 21 31 22 32 ... 27 37 |
| __m128i t3 = _mm_unpackhi_epi8(kernel.packet[2], kernel.packet[3]); // 28 38 29 39 2a 3a ... 2f 3f |
| __m128i t4 = _mm_unpacklo_epi8(kernel.packet[4], kernel.packet[5]); // 40 50 41 51 42 52 47 57 |
| __m128i t5 = _mm_unpackhi_epi8(kernel.packet[4], kernel.packet[5]); // 48 58 49 59 4a 5a |
| __m128i t6 = _mm_unpacklo_epi8(kernel.packet[6], kernel.packet[7]); |
| __m128i t7 = _mm_unpackhi_epi8(kernel.packet[6], kernel.packet[7]); |
| __m128i t8 = _mm_unpacklo_epi8(kernel.packet[8], kernel.packet[9]); |
| __m128i t9 = _mm_unpackhi_epi8(kernel.packet[8], kernel.packet[9]); |
| __m128i ta = _mm_unpacklo_epi8(kernel.packet[10], kernel.packet[11]); |
| __m128i tb = _mm_unpackhi_epi8(kernel.packet[10], kernel.packet[11]); |
| __m128i tc = _mm_unpacklo_epi8(kernel.packet[12], kernel.packet[13]); |
| __m128i td = _mm_unpackhi_epi8(kernel.packet[12], kernel.packet[13]); |
| __m128i te = _mm_unpacklo_epi8(kernel.packet[14], kernel.packet[15]); |
| __m128i tf = _mm_unpackhi_epi8(kernel.packet[14], kernel.packet[15]); |
| |
| __m128i s0 = _mm_unpacklo_epi16(t0, t2); // 00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 |
| __m128i s1 = _mm_unpackhi_epi16(t0, t2); // 04 14 24 34 |
| __m128i s2 = _mm_unpacklo_epi16(t1, t3); // 08 18 28 38 ... |
| __m128i s3 = _mm_unpackhi_epi16(t1, t3); // 0c 1c 2c 3c ... |
| __m128i s4 = _mm_unpacklo_epi16(t4, t6); // 40 50 60 70 41 51 61 71 42 52 62 72 43 53 63 73 |
| __m128i s5 = _mm_unpackhi_epi16(t4, t6); // 44 54 64 74 ... |
| __m128i s6 = _mm_unpacklo_epi16(t5, t7); |
| __m128i s7 = _mm_unpackhi_epi16(t5, t7); |
| __m128i s8 = _mm_unpacklo_epi16(t8, ta); |
| __m128i s9 = _mm_unpackhi_epi16(t8, ta); |
| __m128i sa = _mm_unpacklo_epi16(t9, tb); |
| __m128i sb = _mm_unpackhi_epi16(t9, tb); |
| __m128i sc = _mm_unpacklo_epi16(tc, te); |
| __m128i sd = _mm_unpackhi_epi16(tc, te); |
| __m128i se = _mm_unpacklo_epi16(td, tf); |
| __m128i sf = _mm_unpackhi_epi16(td, tf); |
| |
| __m128i u0 = _mm_unpacklo_epi32(s0, s4); // 00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71 |
| __m128i u1 = _mm_unpackhi_epi32(s0, s4); // 02 12 22 32 42 52 62 72 03 13 23 33 43 53 63 73 |
| __m128i u2 = _mm_unpacklo_epi32(s1, s5); |
| __m128i u3 = _mm_unpackhi_epi32(s1, s5); |
| __m128i u4 = _mm_unpacklo_epi32(s2, s6); |
| __m128i u5 = _mm_unpackhi_epi32(s2, s6); |
| __m128i u6 = _mm_unpacklo_epi32(s3, s7); |
| __m128i u7 = _mm_unpackhi_epi32(s3, s7); |
| __m128i u8 = _mm_unpacklo_epi32(s8, sc); |
| __m128i u9 = _mm_unpackhi_epi32(s8, sc); |
| __m128i ua = _mm_unpacklo_epi32(s9, sd); |
| __m128i ub = _mm_unpackhi_epi32(s9, sd); |
| __m128i uc = _mm_unpacklo_epi32(sa, se); |
| __m128i ud = _mm_unpackhi_epi32(sa, se); |
| __m128i ue = _mm_unpacklo_epi32(sb, sf); |
| __m128i uf = _mm_unpackhi_epi32(sb, sf); |
| |
| kernel.packet[0] = _mm_unpacklo_epi64(u0, u8); |
| kernel.packet[1] = _mm_unpackhi_epi64(u0, u8); |
| kernel.packet[2] = _mm_unpacklo_epi64(u1, u9); |
| kernel.packet[3] = _mm_unpackhi_epi64(u1, u9); |
| kernel.packet[4] = _mm_unpacklo_epi64(u2, ua); |
| kernel.packet[5] = _mm_unpackhi_epi64(u2, ua); |
| kernel.packet[6] = _mm_unpacklo_epi64(u3, ub); |
| kernel.packet[7] = _mm_unpackhi_epi64(u3, ub); |
| kernel.packet[8] = _mm_unpacklo_epi64(u4, uc); |
| kernel.packet[9] = _mm_unpackhi_epi64(u4, uc); |
| kernel.packet[10] = _mm_unpacklo_epi64(u5, ud); |
| kernel.packet[11] = _mm_unpackhi_epi64(u5, ud); |
| kernel.packet[12] = _mm_unpacklo_epi64(u6, ue); |
| kernel.packet[13] = _mm_unpackhi_epi64(u6, ue); |
| kernel.packet[14] = _mm_unpacklo_epi64(u7, uf); |
| kernel.packet[15] = _mm_unpackhi_epi64(u7, uf); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4i pblend(const Selector<4>& ifPacket, const Packet4i& thenPacket, const Packet4i& elsePacket) { |
| const __m128i zero = _mm_setzero_si128(); |
| const __m128i select = _mm_set_epi32(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); |
| __m128i false_mask = _mm_cmpeq_epi32(select, zero); |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_blendv_epi8(thenPacket, elsePacket, false_mask); |
| #else |
| return _mm_or_si128(_mm_andnot_si128(false_mask, thenPacket), _mm_and_si128(false_mask, elsePacket)); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet4f pblend(const Selector<4>& ifPacket, const Packet4f& thenPacket, const Packet4f& elsePacket) { |
| const __m128 zero = _mm_setzero_ps(); |
| const __m128 select = _mm_set_ps(ifPacket.select[3], ifPacket.select[2], ifPacket.select[1], ifPacket.select[0]); |
| __m128 false_mask = _mm_cmpeq_ps(select, zero); |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_blendv_ps(thenPacket, elsePacket, false_mask); |
| #else |
| return _mm_or_ps(_mm_andnot_ps(false_mask, thenPacket), _mm_and_ps(false_mask, elsePacket)); |
| #endif |
| } |
| template<> EIGEN_STRONG_INLINE Packet2d pblend(const Selector<2>& ifPacket, const Packet2d& thenPacket, const Packet2d& elsePacket) { |
| const __m128d zero = _mm_setzero_pd(); |
| const __m128d select = _mm_set_pd(ifPacket.select[1], ifPacket.select[0]); |
| __m128d false_mask = _mm_cmpeq_pd(select, zero); |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| return _mm_blendv_pd(thenPacket, elsePacket, false_mask); |
| #else |
| return _mm_or_pd(_mm_andnot_pd(false_mask, thenPacket), _mm_and_pd(false_mask, elsePacket)); |
| #endif |
| } |
| |
| // Scalar path for pmadd with FMA to ensure consistency with vectorized path. |
| #ifdef EIGEN_VECTORIZE_FMA |
| template<> EIGEN_STRONG_INLINE float pmadd(const float& a, const float& b, const float& c) { |
| return ::fmaf(a,b,c); |
| } |
| template<> EIGEN_STRONG_INLINE double pmadd(const double& a, const double& b, const double& c) { |
| return ::fma(a,b,c); |
| } |
| template<> EIGEN_STRONG_INLINE float pmsub(const float& a, const float& b, const float& c) { |
| return ::fmaf(a,b,-c); |
| } |
| template<> EIGEN_STRONG_INLINE double pmsub(const double& a, const double& b, const double& c) { |
| return ::fma(a,b,-c); |
| } |
| template<> EIGEN_STRONG_INLINE float pnmadd(const float& a, const float& b, const float& c) { |
| return ::fmaf(-a,b,c); |
| } |
| template<> EIGEN_STRONG_INLINE double pnmadd(const double& a, const double& b, const double& c) { |
| return ::fma(-a,b,c); |
| } |
| template<> EIGEN_STRONG_INLINE float pnmsub(const float& a, const float& b, const float& c) { |
| return ::fmaf(-a,b,-c); |
| } |
| template<> EIGEN_STRONG_INLINE double pnmsub(const double& a, const double& b, const double& c) { |
| return ::fma(-a,b,-c); |
| } |
| #endif |
| |
| #ifdef EIGEN_VECTORIZE_SSE4_1 |
| // Helpers for half->float and float->half conversions. |
| // Currently only used by the AVX code. |
| EIGEN_STRONG_INLINE __m128i half2floatsse(__m128i h) { |
| __m128i input = _mm_cvtepu16_epi32(h); |
| |
| // Direct vectorization of half_to_float, C parts in the comments. |
| __m128i shifted_exp = _mm_set1_epi32(0x7c00 << 13); |
| // o.u = (h.x & 0x7fff) << 13; // exponent/mantissa bits |
| __m128i ou = _mm_slli_epi32(_mm_and_si128(input, _mm_set1_epi32(0x7fff)), 13); |
| // exp = shifted_exp & o.u; // just the exponent |
| __m128i exp = _mm_and_si128(ou, shifted_exp); |
| // o.u += (127 - 15) << 23; |
| ou = _mm_add_epi32(ou, _mm_set1_epi32((127 - 15) << 23)); |
| |
| // Inf/NaN? |
| __m128i naninf_mask = _mm_cmpeq_epi32(exp, shifted_exp); |
| // Inf/NaN adjust |
| __m128i naninf_adj = |
| _mm_and_si128(_mm_set1_epi32((128 - 16) << 23), naninf_mask); |
| // extra exp adjust for Inf/NaN |
| ou = _mm_add_epi32(ou, naninf_adj); |
| |
| // Zero/Denormal? |
| __m128i zeroden_mask = _mm_cmpeq_epi32(exp, _mm_setzero_si128()); |
| __m128i zeroden_adj = _mm_and_si128(zeroden_mask, _mm_set1_epi32(1 << 23)); |
| // o.u += 1 << 23; |
| ou = _mm_add_epi32(ou, zeroden_adj); |
| // magic.u = 113 << 23 |
| __m128i magic = _mm_and_si128(zeroden_mask, _mm_set1_epi32(113 << 23)); |
| // o.f -= magic.f |
| ou = _mm_castps_si128( |
| _mm_sub_ps(_mm_castsi128_ps(ou), _mm_castsi128_ps(magic))); |
| |
| __m128i sign = |
| _mm_slli_epi32(_mm_and_si128(input, _mm_set1_epi32(0x8000)), 16); |
| // o.u |= (h.x & 0x8000) << 16; // sign bit |
| ou = _mm_or_si128(ou, sign); |
| // return o.f; |
| // We are actually returning uint version, to make |
| // _mm256_insertf128_si256 work. |
| return ou; |
| } |
| |
| EIGEN_STRONG_INLINE __m128i float2half(__m128 f) { |
| __m128i o = _mm_setzero_si128(); |
| |
| // unsigned int sign_mask = 0x80000000u; |
| __m128i sign = _mm_set1_epi32(0x80000000u); |
| // unsigned int sign = f.u & sign_mask; |
| sign = _mm_and_si128(sign, _mm_castps_si128(f)); |
| // f.u ^= sign; |
| f = _mm_xor_ps(f, _mm_castsi128_ps(sign)); |
| |
| __m128i fu = _mm_castps_si128(f); |
| |
| __m128i f16max = _mm_set1_epi32((127 + 16) << 23); |
| __m128i f32infty = _mm_set1_epi32(255 << 23); |
| // if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set) |
| // there is no _mm_cmpge_epi32, so use lt and swap operands |
| __m128i infnan_mask = _mm_cmplt_epi32(f16max, _mm_castps_si128(f)); |
| __m128i inf_mask = _mm_cmpgt_epi32(_mm_castps_si128(f), f32infty); |
| __m128i nan_mask = _mm_andnot_si128(inf_mask, infnan_mask); |
| __m128i inf_value = _mm_and_si128(inf_mask, _mm_set1_epi32(0x7e00)); |
| __m128i nan_value = _mm_and_si128(nan_mask, _mm_set1_epi32(0x7c00)); |
| // o.x = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf |
| __m128i naninf_value = _mm_or_si128(inf_value, nan_value); |
| |
| __m128i denorm_magic = _mm_set1_epi32(((127 - 15) + (23 - 10) + 1) << 23); |
| __m128i subnorm_mask = |
| _mm_cmplt_epi32(_mm_castps_si128(f), _mm_set1_epi32(113 << 23)); |
| // f.f += denorm_magic.f; |
| f = _mm_add_ps(f, _mm_castsi128_ps(denorm_magic)); |
| // f.u - denorm_magic.u |
| o = _mm_sub_epi32(_mm_castps_si128(f), denorm_magic); |
| o = _mm_and_si128(o, subnorm_mask); |
| // Correct result for inf/nan/zero/subnormal, 0 otherwise |
| o = _mm_or_si128(o, naninf_value); |
| |
| __m128i mask = _mm_or_si128(infnan_mask, subnorm_mask); |
| o = _mm_and_si128(o, mask); |
| |
| // mant_odd = (f.u >> 13) & 1; |
| __m128i mand_odd = _mm_and_si128(_mm_srli_epi32(fu, 13), _mm_set1_epi32(0x1)); |
| // f.u += 0xc8000fffU; |
| fu = _mm_add_epi32(fu, _mm_set1_epi32(0xc8000fffU)); |
| // f.u += mant_odd; |
| fu = _mm_add_epi32(fu, mand_odd); |
| fu = _mm_andnot_si128(mask, fu); |
| // f.u >> 13 |
| fu = _mm_srli_epi32(fu, 13); |
| o = _mm_or_si128(fu, o); |
| |
| // o.x |= static_cast<numext::uint16_t>(sign >> 16); |
| o = _mm_or_si128(o, _mm_srli_epi32(sign, 16)); |
| |
| // 16 bit values |
| return _mm_and_si128(o, _mm_set1_epi32(0xffff)); |
| } |
| #endif |
| |
| // Packet math for Eigen::half |
| // Disable the following code since it's broken on too many platforms / compilers. |
| //#elif defined(EIGEN_VECTORIZE_SSE) && (!EIGEN_ARCH_x86_64) && (!EIGEN_COMP_MSVC) |
| #if 0 |
| |
| typedef struct { |
| __m64 x; |
| } Packet4h; |
| |
| |
| template<> struct is_arithmetic<Packet4h> { enum { value = true }; }; |
| |
| template <> |
| struct packet_traits<Eigen::half> : default_packet_traits { |
| typedef Packet4h type; |
| // There is no half-size packet for Packet4h. |
| typedef Packet4h half; |
| enum { |
| Vectorizable = 1, |
| AlignedOnScalar = 1, |
| size = 4, |
| HasHalfPacket = 0, |
| HasAdd = 1, |
| HasSub = 1, |
| HasMul = 1, |
| HasDiv = 1, |
| HasNegate = 0, |
| HasAbs = 0, |
| HasAbs2 = 0, |
| HasMin = 0, |
| HasMax = 0, |
| HasConj = 0, |
| HasSetLinear = 0, |
| HasSqrt = 0, |
| HasRsqrt = 0, |
| HasExp = 0, |
| HasLog = 0, |
| HasBlend = 0 |
| }; |
| }; |
| |
| |
| template<> struct unpacket_traits<Packet4h> { typedef Eigen::half type; enum {size=4, alignment=Aligned16, vectorizable=true, masked_load_available=false, masked_store_available=false}; typedef Packet4h half; }; |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pset1<Packet4h>(const Eigen::half& from) { |
| Packet4h result; |
| result.x = _mm_set1_pi16(from.x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Eigen::half pfirst<Packet4h>(const Packet4h& from) { |
| return half_impl::raw_uint16_to_half(static_cast<unsigned short>(_mm_cvtsi64_si32(from.x))); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pconj(const Packet4h& a) { return a; } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h padd<Packet4h>(const Packet4h& a, const Packet4h& b) { |
| __int64_t a64 = _mm_cvtm64_si64(a.x); |
| __int64_t b64 = _mm_cvtm64_si64(b.x); |
| |
| Eigen::half h[4]; |
| |
| Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64)); |
| Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64)); |
| h[0] = ha + hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16)); |
| h[1] = ha + hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32)); |
| h[2] = ha + hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48)); |
| h[3] = ha + hb; |
| Packet4h result; |
| result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h psub<Packet4h>(const Packet4h& a, const Packet4h& b) { |
| __int64_t a64 = _mm_cvtm64_si64(a.x); |
| __int64_t b64 = _mm_cvtm64_si64(b.x); |
| |
| Eigen::half h[4]; |
| |
| Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64)); |
| Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64)); |
| h[0] = ha - hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16)); |
| h[1] = ha - hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32)); |
| h[2] = ha - hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48)); |
| h[3] = ha - hb; |
| Packet4h result; |
| result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pmul<Packet4h>(const Packet4h& a, const Packet4h& b) { |
| __int64_t a64 = _mm_cvtm64_si64(a.x); |
| __int64_t b64 = _mm_cvtm64_si64(b.x); |
| |
| Eigen::half h[4]; |
| |
| Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64)); |
| Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64)); |
| h[0] = ha * hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16)); |
| h[1] = ha * hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32)); |
| h[2] = ha * hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48)); |
| h[3] = ha * hb; |
| Packet4h result; |
| result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pdiv<Packet4h>(const Packet4h& a, const Packet4h& b) { |
| __int64_t a64 = _mm_cvtm64_si64(a.x); |
| __int64_t b64 = _mm_cvtm64_si64(b.x); |
| |
| Eigen::half h[4]; |
| |
| Eigen::half ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64)); |
| Eigen::half hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64)); |
| h[0] = ha / hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 16)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 16)); |
| h[1] = ha / hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 32)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 32)); |
| h[2] = ha / hb; |
| ha = half_impl::raw_uint16_to_half(static_cast<unsigned short>(a64 >> 48)); |
| hb = half_impl::raw_uint16_to_half(static_cast<unsigned short>(b64 >> 48)); |
| h[3] = ha / hb; |
| Packet4h result; |
| result.x = _mm_set_pi16(h[3].x, h[2].x, h[1].x, h[0].x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pload<Packet4h>(const Eigen::half* from) { |
| Packet4h result; |
| result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from)); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h ploadu<Packet4h>(const Eigen::half* from) { |
| Packet4h result; |
| result.x = _mm_cvtsi64_m64(*reinterpret_cast<const __int64_t*>(from)); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstore<Eigen::half>(Eigen::half* to, const Packet4h& from) { |
| __int64_t r = _mm_cvtm64_si64(from.x); |
| *(reinterpret_cast<__int64_t*>(to)) = r; |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pstoreu<Eigen::half>(Eigen::half* to, const Packet4h& from) { |
| __int64_t r = _mm_cvtm64_si64(from.x); |
| *(reinterpret_cast<__int64_t*>(to)) = r; |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h |
| ploadquad<Packet4h>(const Eigen::half* from) { |
| return pset1<Packet4h>(*from); |
| } |
| |
| template<> EIGEN_STRONG_INLINE Packet4h pgather<Eigen::half, Packet4h>(const Eigen::half* from, Index stride) |
| { |
| Packet4h result; |
| result.x = _mm_set_pi16(from[3*stride].x, from[2*stride].x, from[1*stride].x, from[0*stride].x); |
| return result; |
| } |
| |
| template<> EIGEN_STRONG_INLINE void pscatter<Eigen::half, Packet4h>(Eigen::half* to, const Packet4h& from, Index stride) |
| { |
| __int64_t a = _mm_cvtm64_si64(from.x); |
| to[stride*0].x = static_cast<unsigned short>(a); |
| to[stride*1].x = static_cast<unsigned short>(a >> 16); |
| to[stride*2].x = static_cast<unsigned short>(a >> 32); |
| to[stride*3].x = static_cast<unsigned short>(a >> 48); |
| } |
| |
| EIGEN_STRONG_INLINE void |
| ptranspose(PacketBlock<Packet4h,4>& kernel) { |
| __m64 T0 = _mm_unpacklo_pi16(kernel.packet[0].x, kernel.packet[1].x); |
| __m64 T1 = _mm_unpacklo_pi16(kernel.packet[2].x, kernel.packet[3].x); |
| __m64 T2 = _mm_unpackhi_pi16(kernel.packet[0].x, kernel.packet[1].x); |
| __m64 T3 = _mm_unpackhi_pi16(kernel.packet[2].x, kernel.packet[3].x); |
| |
| kernel.packet[0].x = _mm_unpacklo_pi32(T0, T1); |
| kernel.packet[1].x = _mm_unpackhi_pi32(T0, T1); |
| kernel.packet[2].x = _mm_unpacklo_pi32(T2, T3); |
| kernel.packet[3].x = _mm_unpackhi_pi32(T2, T3); |
| } |
| |
| #endif |
| |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #if EIGEN_COMP_PGI && EIGEN_COMP_PGI < 1900 |
| // PGI++ does not define the following intrinsics in C++ mode. |
| static inline __m128 _mm_castpd_ps (__m128d x) { return reinterpret_cast<__m128&>(x); } |
| static inline __m128i _mm_castpd_si128(__m128d x) { return reinterpret_cast<__m128i&>(x); } |
| static inline __m128d _mm_castps_pd (__m128 x) { return reinterpret_cast<__m128d&>(x); } |
| static inline __m128i _mm_castps_si128(__m128 x) { return reinterpret_cast<__m128i&>(x); } |
| static inline __m128 _mm_castsi128_ps(__m128i x) { return reinterpret_cast<__m128&>(x); } |
| static inline __m128d _mm_castsi128_pd(__m128i x) { return reinterpret_cast<__m128d&>(x); } |
| #endif |
| |
| #endif // EIGEN_PACKET_MATH_SSE_H |