| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/Geometry> |
| #include <Eigen/LU> |
| #include <Eigen/SVD> |
| #include "AnnoyingScalar.h" |
| |
| template<typename T> T bounded_acos(T v) |
| { |
| using std::acos; |
| using std::min; |
| using std::max; |
| return acos((max)(T(-1),(min)(v,T(1)))); |
| } |
| |
| template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1) |
| { |
| using std::abs; |
| typedef typename QuatType::Scalar Scalar; |
| typedef AngleAxis<Scalar> AA; |
| |
| Scalar largeEps = test_precision<Scalar>(); |
| |
| Scalar theta_tot = AA(q1*q0.inverse()).angle(); |
| if(theta_tot>Scalar(EIGEN_PI)) |
| theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot; |
| for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1)) |
| { |
| QuatType q = q0.slerp(t,q1); |
| Scalar theta = AA(q*q0.inverse()).angle(); |
| VERIFY(abs(q.norm() - 1) < largeEps); |
| if(theta_tot==0) VERIFY(theta_tot==0); |
| else VERIFY(abs(theta - t * theta_tot) < largeEps); |
| } |
| } |
| |
| template<typename Scalar, int Options> void quaternion(void) |
| { |
| /* this test covers the following files: |
| Quaternion.h |
| */ |
| using std::abs; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef Matrix<Scalar,3,3> Matrix3; |
| typedef Quaternion<Scalar,Options> Quaternionx; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| |
| Scalar largeEps = test_precision<Scalar>(); |
| if (internal::is_same<Scalar,float>::value) |
| largeEps = Scalar(1e-3); |
| |
| Scalar eps = internal::random<Scalar>() * Scalar(1e-2); |
| |
| Vector3 v0 = Vector3::Random(), |
| v1 = Vector3::Random(), |
| v2 = Vector3::Random(), |
| v3 = Vector3::Random(); |
| |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)), |
| b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| |
| // Quaternion: Identity(), setIdentity(); |
| Quaternionx q1, q2; |
| q2.setIdentity(); |
| VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs()); |
| q1.coeffs().setRandom(); |
| VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs()); |
| |
| #ifndef EIGEN_NO_IO |
| // Printing |
| std::ostringstream ss; |
| ss << q2; |
| VERIFY(ss.str() == "0i + 0j + 0k + 1"); |
| #endif |
| |
| // concatenation |
| q1 *= q2; |
| |
| q1 = AngleAxisx(a, v0.normalized()); |
| q2 = AngleAxisx(a, v1.normalized()); |
| |
| // angular distance |
| Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle()); |
| if (refangle>Scalar(EIGEN_PI)) |
| refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle; |
| |
| if((q1.coeffs()-q2.coeffs()).norm() > Scalar(10)*largeEps) |
| { |
| VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1)); |
| } |
| |
| // rotation matrix conversion |
| VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2); |
| VERIFY_IS_APPROX(q1 * q2 * v2, |
| q1.toRotationMatrix() * q2.toRotationMatrix() * v2); |
| |
| VERIFY( (q2*q1).isApprox(q1*q2, largeEps) |
| || !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2)); |
| |
| q2 = q1.toRotationMatrix(); |
| VERIFY_IS_APPROX(q1*v1,q2*v1); |
| |
| Matrix3 rot1(q1); |
| VERIFY_IS_APPROX(q1*v1,rot1*v1); |
| Quaternionx q3(rot1.transpose()*rot1); |
| VERIFY_IS_APPROX(q3*v1,v1); |
| |
| |
| // angle-axis conversion |
| AngleAxisx aa = AngleAxisx(q1); |
| VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1); |
| |
| // Do not execute the test if the rotation angle is almost zero, or |
| // the rotation axis and v1 are almost parallel. |
| if (abs(aa.angle()) > Scalar(5)*test_precision<Scalar>() |
| && (aa.axis() - v1.normalized()).norm() < Scalar(1.99) |
| && (aa.axis() + v1.normalized()).norm() < Scalar(1.99)) |
| { |
| VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1); |
| } |
| |
| // from two vector creation |
| VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized()); |
| VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized()); |
| VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized()); |
| if (internal::is_same<Scalar,double>::value) |
| { |
| v3 = (v1.array()+eps).matrix(); |
| VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized()); |
| VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized()); |
| } |
| |
| // from two vector creation static function |
| VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized()); |
| VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized()); |
| VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized()); |
| if (internal::is_same<Scalar,double>::value) |
| { |
| v3 = (v1.array()+eps).matrix(); |
| VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized()); |
| VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized()); |
| } |
| |
| // inverse and conjugate |
| VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1); |
| VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1); |
| |
| // test casting |
| Quaternion<float> q1f = q1.template cast<float>(); |
| VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1); |
| Quaternion<double> q1d = q1.template cast<double>(); |
| VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1); |
| |
| // test bug 369 - improper alignment. |
| Quaternionx *q = new Quaternionx; |
| delete q; |
| |
| q1 = Quaternionx::UnitRandom(); |
| q2 = Quaternionx::UnitRandom(); |
| check_slerp(q1,q2); |
| |
| q1 = AngleAxisx(b, v1.normalized()); |
| q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized()); |
| check_slerp(q1,q2); |
| |
| q1 = AngleAxisx(b, v1.normalized()); |
| q2 = AngleAxisx(-b, -v1.normalized()); |
| check_slerp(q1,q2); |
| |
| q1 = Quaternionx::UnitRandom(); |
| q2.coeffs() = -q1.coeffs(); |
| check_slerp(q1,q2); |
| } |
| |
| template<typename Scalar> void mapQuaternion(void){ |
| typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA; |
| typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA; |
| typedef Map<Quaternion<Scalar> > MQuaternionUA; |
| typedef Map<const Quaternion<Scalar> > MCQuaternionUA; |
| typedef Quaternion<Scalar> Quaternionx; |
| typedef Matrix<Scalar,3,1> Vector3; |
| typedef AngleAxis<Scalar> AngleAxisx; |
| |
| Vector3 v0 = Vector3::Random(), |
| v1 = Vector3::Random(); |
| Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)); |
| |
| EIGEN_ALIGN_MAX Scalar array1[4]; |
| EIGEN_ALIGN_MAX Scalar array2[4]; |
| EIGEN_ALIGN_MAX Scalar array3[4+1]; |
| Scalar* array3unaligned = array3+1; |
| |
| MQuaternionA mq1(array1); |
| MCQuaternionA mcq1(array1); |
| MQuaternionA mq2(array2); |
| MQuaternionUA mq3(array3unaligned); |
| MCQuaternionUA mcq3(array3unaligned); |
| |
| // std::cerr << array1 << " " << array2 << " " << array3 << "\n"; |
| mq1 = AngleAxisx(a, v0.normalized()); |
| mq2 = mq1; |
| mq3 = mq1; |
| |
| Quaternionx q1 = mq1; |
| Quaternionx q2 = mq2; |
| Quaternionx q3 = mq3; |
| Quaternionx q4 = MCQuaternionUA(array3unaligned); |
| |
| VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs()); |
| VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs()); |
| VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs()); |
| |
| VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1); |
| VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1); |
| |
| VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1); |
| VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1); |
| |
| VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1); |
| VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1); |
| |
| VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1); |
| VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1); |
| |
| VERIFY_IS_APPROX(mq1*mq2, q1*q2); |
| VERIFY_IS_APPROX(mq3*mq2, q3*q2); |
| VERIFY_IS_APPROX(mcq1*mq2, q1*q2); |
| VERIFY_IS_APPROX(mcq3*mq2, q3*q2); |
| |
| // Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks: |
| VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum()); |
| VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum()); |
| mq3.w() = 1; |
| const Quaternionx& cq3(q3); |
| VERIFY( &cq3.x() == &q3.x() ); |
| const MQuaternionUA& cmq3(mq3); |
| VERIFY( &cmq3.x() == &mq3.x() ); |
| // FIXME the following should be ok. The problem is that currently the LValueBit flag |
| // is used to determine whether we can return a coeff by reference or not, which is not enough for Map<const ...>. |
| //const MCQuaternionUA& cmcq3(mcq3); |
| //VERIFY( &cmcq3.x() == &mcq3.x() ); |
| |
| // test cast |
| { |
| Quaternion<float> q1f = mq1.template cast<float>(); |
| VERIFY_IS_APPROX(q1f.template cast<Scalar>(),mq1); |
| Quaternion<double> q1d = mq1.template cast<double>(); |
| VERIFY_IS_APPROX(q1d.template cast<Scalar>(),mq1); |
| } |
| } |
| |
| template<typename Scalar> void quaternionAlignment(void){ |
| typedef Quaternion<Scalar,AutoAlign> QuaternionA; |
| typedef Quaternion<Scalar,DontAlign> QuaternionUA; |
| |
| EIGEN_ALIGN_MAX Scalar array1[4]; |
| EIGEN_ALIGN_MAX Scalar array2[4]; |
| EIGEN_ALIGN_MAX Scalar array3[4+1]; |
| Scalar* arrayunaligned = array3+1; |
| |
| QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA; |
| QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA; |
| QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA; |
| |
| q1->coeffs().setRandom(); |
| *q2 = *q1; |
| *q3 = *q1; |
| |
| VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs()); |
| VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs()); |
| } |
| |
| template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&) |
| { |
| // there's a lot that we can't test here while still having this test compile! |
| // the only possible approach would be to run a script trying to compile stuff and checking that it fails. |
| // CMake can help with that. |
| |
| // verify that map-to-const don't have LvalueBit |
| typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType; |
| VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) ); |
| VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) ); |
| VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) ); |
| VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) ); |
| } |
| |
| // Regression for bug 1573 |
| struct MovableClass { |
| // The following line is a workaround for gcc 4.7 and 4.8 (see bug 1573 comments). |
| static_assert(std::is_nothrow_move_constructible<Quaternionf>::value,""); |
| MovableClass() = default; |
| MovableClass(const MovableClass&) = default; |
| MovableClass(MovableClass&&) noexcept = default; |
| MovableClass& operator=(const MovableClass&) = default; |
| MovableClass& operator=(MovableClass&&) = default; |
| Quaternionf m_quat; |
| }; |
| |
| EIGEN_DECLARE_TEST(geo_quaternion) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(( quaternion<float,AutoAlign>() )); |
| CALL_SUBTEST_1( check_const_correctness(Quaternionf()) ); |
| CALL_SUBTEST_1(( quaternion<float,DontAlign>() )); |
| CALL_SUBTEST_1(( quaternionAlignment<float>() )); |
| CALL_SUBTEST_1( mapQuaternion<float>() ); |
| |
| CALL_SUBTEST_2(( quaternion<double,AutoAlign>() )); |
| CALL_SUBTEST_2( check_const_correctness(Quaterniond()) ); |
| CALL_SUBTEST_2(( quaternion<double,DontAlign>() )); |
| CALL_SUBTEST_2(( quaternionAlignment<double>() )); |
| CALL_SUBTEST_2( mapQuaternion<double>() ); |
| |
| #ifndef EIGEN_TEST_ANNOYING_SCALAR_DONT_THROW |
| AnnoyingScalar::dont_throw = true; |
| #endif |
| CALL_SUBTEST_3(( quaternion<AnnoyingScalar,AutoAlign>() )); |
| } |
| } |