| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #if defined(EIGEN_TEST_PART_7) |
| |
| // ignore double-promotion diagnostic for clang and gcc, if we check for static assertion anyway: |
| // TODO do the same for MSVC? |
| #if defined(__clang__) |
| # if (__clang_major__ * 100 + __clang_minor__) >= 308 |
| # pragma clang diagnostic ignored "-Wdouble-promotion" |
| # endif |
| #elif defined(__GNUC__) |
| // TODO is there a minimal GCC version for this? At least g++-4.7 seems to be fine with this. |
| # pragma GCC diagnostic ignored "-Wdouble-promotion" |
| #endif |
| |
| #endif |
| |
| |
| |
| #if defined(EIGEN_TEST_PART_1) || defined(EIGEN_TEST_PART_2) || defined(EIGEN_TEST_PART_3) |
| |
| #ifndef EIGEN_DONT_VECTORIZE |
| #define EIGEN_DONT_VECTORIZE |
| #endif |
| |
| #endif |
| |
| static bool g_called; |
| #define EIGEN_SCALAR_BINARY_OP_PLUGIN { g_called |= (!internal::is_same<LhsScalar,RhsScalar>::value); } |
| |
| #include "main.h" |
| |
| using namespace std; |
| |
| #define VERIFY_MIX_SCALAR(XPR,REF) \ |
| g_called = false; \ |
| VERIFY_IS_APPROX(XPR,REF); \ |
| VERIFY( g_called && #XPR" not properly optimized"); |
| |
| template<int SizeAtCompileType> void mixingtypes(int size = SizeAtCompileType) |
| { |
| typedef std::complex<float> CF; |
| typedef std::complex<double> CD; |
| typedef Matrix<float, SizeAtCompileType, SizeAtCompileType> Mat_f; |
| typedef Matrix<double, SizeAtCompileType, SizeAtCompileType> Mat_d; |
| typedef Matrix<std::complex<float>, SizeAtCompileType, SizeAtCompileType> Mat_cf; |
| typedef Matrix<std::complex<double>, SizeAtCompileType, SizeAtCompileType> Mat_cd; |
| typedef Matrix<float, SizeAtCompileType, 1> Vec_f; |
| typedef Matrix<double, SizeAtCompileType, 1> Vec_d; |
| typedef Matrix<std::complex<float>, SizeAtCompileType, 1> Vec_cf; |
| typedef Matrix<std::complex<double>, SizeAtCompileType, 1> Vec_cd; |
| |
| Mat_f mf = Mat_f::Random(size,size); |
| Mat_d md = mf.template cast<double>(); |
| //Mat_d rd = md; |
| Mat_cf mcf = Mat_cf::Random(size,size); |
| Mat_cd mcd = mcf.template cast<complex<double> >(); |
| Mat_cd rcd = mcd; |
| Vec_f vf = Vec_f::Random(size,1); |
| Vec_d vd = vf.template cast<double>(); |
| Vec_cf vcf = Vec_cf::Random(size,1); |
| Vec_cd vcd = vcf.template cast<complex<double> >(); |
| float sf = internal::random<float>(); |
| double sd = internal::random<double>(); |
| complex<float> scf = internal::random<complex<float> >(); |
| complex<double> scd = internal::random<complex<double> >(); |
| |
| mf+mf; |
| |
| float epsf = std::sqrt(std::numeric_limits<float> ::min EIGEN_EMPTY ()); |
| double epsd = std::sqrt(std::numeric_limits<double>::min EIGEN_EMPTY ()); |
| |
| while(std::abs(sf )<epsf) sf = internal::random<float>(); |
| while(std::abs(sd )<epsd) sd = internal::random<double>(); |
| while(std::abs(scf)<epsf) scf = internal::random<CF>(); |
| while(std::abs(scd)<epsd) scd = internal::random<CD>(); |
| |
| // check scalar products |
| VERIFY_MIX_SCALAR(vcf * sf , vcf * complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd * vcd , complex<double>(sd) * vcd); |
| VERIFY_MIX_SCALAR(vf * scf , vf.template cast<complex<float> >() * scf); |
| VERIFY_MIX_SCALAR(scd * vd , scd * vd.template cast<complex<double> >()); |
| |
| VERIFY_MIX_SCALAR(vcf * 2 , vcf * complex<float>(2)); |
| VERIFY_MIX_SCALAR(vcf * 2.1 , vcf * complex<float>(2.1)); |
| VERIFY_MIX_SCALAR(2 * vcf, vcf * complex<float>(2)); |
| VERIFY_MIX_SCALAR(2.1 * vcf , vcf * complex<float>(2.1)); |
| |
| // check scalar quotients |
| VERIFY_MIX_SCALAR(vcf / sf , vcf / complex<float>(sf)); |
| VERIFY_MIX_SCALAR(vf / scf , vf.template cast<complex<float> >() / scf); |
| VERIFY_MIX_SCALAR(vf.array() / scf, vf.template cast<complex<float> >().array() / scf); |
| VERIFY_MIX_SCALAR(scd / vd.array() , scd / vd.template cast<complex<double> >().array()); |
| |
| // check scalar increment |
| VERIFY_MIX_SCALAR(vcf.array() + sf , vcf.array() + complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd + vcd.array(), complex<double>(sd) + vcd.array()); |
| VERIFY_MIX_SCALAR(vf.array() + scf, vf.template cast<complex<float> >().array() + scf); |
| VERIFY_MIX_SCALAR(scd + vd.array() , scd + vd.template cast<complex<double> >().array()); |
| |
| // check scalar subtractions |
| VERIFY_MIX_SCALAR(vcf.array() - sf , vcf.array() - complex<float>(sf)); |
| VERIFY_MIX_SCALAR(sd - vcd.array(), complex<double>(sd) - vcd.array()); |
| VERIFY_MIX_SCALAR(vf.array() - scf, vf.template cast<complex<float> >().array() - scf); |
| VERIFY_MIX_SCALAR(scd - vd.array() , scd - vd.template cast<complex<double> >().array()); |
| |
| // check scalar powers |
| VERIFY_MIX_SCALAR( pow(vcf.array(), sf), Eigen::pow(vcf.array(), complex<float>(sf)) ); |
| VERIFY_MIX_SCALAR( vcf.array().pow(sf) , Eigen::pow(vcf.array(), complex<float>(sf)) ); |
| VERIFY_MIX_SCALAR( pow(sd, vcd.array()), Eigen::pow(complex<double>(sd), vcd.array()) ); |
| VERIFY_MIX_SCALAR( Eigen::pow(vf.array(), scf), Eigen::pow(vf.template cast<complex<float> >().array(), scf) ); |
| VERIFY_MIX_SCALAR( vf.array().pow(scf) , Eigen::pow(vf.template cast<complex<float> >().array(), scf) ); |
| VERIFY_MIX_SCALAR( Eigen::pow(scd, vd.array()), Eigen::pow(scd, vd.template cast<complex<double> >().array()) ); |
| |
| // check dot product |
| vf.dot(vf); |
| VERIFY_IS_APPROX(vcf.dot(vf), vcf.dot(vf.template cast<complex<float> >())); |
| |
| // check diagonal product |
| VERIFY_IS_APPROX(vf.asDiagonal() * mcf, vf.template cast<complex<float> >().asDiagonal() * mcf); |
| VERIFY_IS_APPROX(vcd.asDiagonal() * md, vcd.asDiagonal() * md.template cast<complex<double> >()); |
| VERIFY_IS_APPROX(mcf * vf.asDiagonal(), mcf * vf.template cast<complex<float> >().asDiagonal()); |
| VERIFY_IS_APPROX(md * vcd.asDiagonal(), md.template cast<complex<double> >() * vcd.asDiagonal()); |
| |
| // check inner product |
| VERIFY_IS_APPROX((vf.transpose() * vcf).value(), (vf.template cast<complex<float> >().transpose() * vcf).value()); |
| |
| // check outer product |
| VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); |
| |
| // coeff wise product |
| |
| VERIFY_IS_APPROX((vf * vcf.transpose()).eval(), (vf.template cast<complex<float> >() * vcf.transpose()).eval()); |
| |
| Mat_cd mcd2 = mcd; |
| VERIFY_IS_APPROX(mcd.array() *= md.array(), mcd2.array() *= md.array().template cast<std::complex<double> >()); |
| |
| // check matrix-matrix products |
| VERIFY_IS_APPROX(sd*md*mcd, (sd*md).template cast<CD>().eval()*mcd); |
| VERIFY_IS_APPROX(sd*mcd*md, sd*mcd*md.template cast<CD>()); |
| VERIFY_IS_APPROX(scd*md*mcd, scd*md.template cast<CD>().eval()*mcd); |
| VERIFY_IS_APPROX(scd*mcd*md, scd*mcd*md.template cast<CD>()); |
| |
| VERIFY_IS_APPROX(sf*mf*mcf, sf*mf.template cast<CF>()*mcf); |
| VERIFY_IS_APPROX(sf*mcf*mf, sf*mcf*mf.template cast<CF>()); |
| VERIFY_IS_APPROX(scf*mf*mcf, scf*mf.template cast<CF>()*mcf); |
| VERIFY_IS_APPROX(scf*mcf*mf, scf*mcf*mf.template cast<CF>()); |
| |
| VERIFY_IS_APPROX(sd*md.adjoint()*mcd, (sd*md).template cast<CD>().eval().adjoint()*mcd); |
| VERIFY_IS_APPROX(sd*mcd.adjoint()*md, sd*mcd.adjoint()*md.template cast<CD>()); |
| VERIFY_IS_APPROX(sd*md.adjoint()*mcd.adjoint(), (sd*md).template cast<CD>().eval().adjoint()*mcd.adjoint()); |
| VERIFY_IS_APPROX(sd*mcd.adjoint()*md.adjoint(), sd*mcd.adjoint()*md.template cast<CD>().adjoint()); |
| VERIFY_IS_APPROX(sd*md*mcd.adjoint(), (sd*md).template cast<CD>().eval()*mcd.adjoint()); |
| VERIFY_IS_APPROX(sd*mcd*md.adjoint(), sd*mcd*md.template cast<CD>().adjoint()); |
| |
| VERIFY_IS_APPROX(sf*mf.adjoint()*mcf, (sf*mf).template cast<CF>().eval().adjoint()*mcf); |
| VERIFY_IS_APPROX(sf*mcf.adjoint()*mf, sf*mcf.adjoint()*mf.template cast<CF>()); |
| VERIFY_IS_APPROX(sf*mf.adjoint()*mcf.adjoint(), (sf*mf).template cast<CF>().eval().adjoint()*mcf.adjoint()); |
| VERIFY_IS_APPROX(sf*mcf.adjoint()*mf.adjoint(), sf*mcf.adjoint()*mf.template cast<CF>().adjoint()); |
| VERIFY_IS_APPROX(sf*mf*mcf.adjoint(), (sf*mf).template cast<CF>().eval()*mcf.adjoint()); |
| VERIFY_IS_APPROX(sf*mcf*mf.adjoint(), sf*mcf*mf.template cast<CF>().adjoint()); |
| |
| VERIFY_IS_APPROX(sf*mf*vcf, (sf*mf).template cast<CF>().eval()*vcf); |
| VERIFY_IS_APPROX(scf*mf*vcf,(scf*mf.template cast<CF>()).eval()*vcf); |
| VERIFY_IS_APPROX(sf*mcf*vf, sf*mcf*vf.template cast<CF>()); |
| VERIFY_IS_APPROX(scf*mcf*vf,scf*mcf*vf.template cast<CF>()); |
| |
| VERIFY_IS_APPROX(sf*vcf.adjoint()*mf, sf*vcf.adjoint()*mf.template cast<CF>().eval()); |
| VERIFY_IS_APPROX(scf*vcf.adjoint()*mf, scf*vcf.adjoint()*mf.template cast<CF>().eval()); |
| VERIFY_IS_APPROX(sf*vf.adjoint()*mcf, sf*vf.adjoint().template cast<CF>().eval()*mcf); |
| VERIFY_IS_APPROX(scf*vf.adjoint()*mcf, scf*vf.adjoint().template cast<CF>().eval()*mcf); |
| |
| VERIFY_IS_APPROX(sd*md*vcd, (sd*md).template cast<CD>().eval()*vcd); |
| VERIFY_IS_APPROX(scd*md*vcd,(scd*md.template cast<CD>()).eval()*vcd); |
| VERIFY_IS_APPROX(sd*mcd*vd, sd*mcd*vd.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(scd*mcd*vd,scd*mcd*vd.template cast<CD>().eval()); |
| |
| VERIFY_IS_APPROX(sd*vcd.adjoint()*md, sd*vcd.adjoint()*md.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(scd*vcd.adjoint()*md, scd*vcd.adjoint()*md.template cast<CD>().eval()); |
| VERIFY_IS_APPROX(sd*vd.adjoint()*mcd, sd*vd.adjoint().template cast<CD>().eval()*mcd); |
| VERIFY_IS_APPROX(scd*vd.adjoint()*mcd, scd*vd.adjoint().template cast<CD>().eval()*mcd); |
| |
| VERIFY_IS_APPROX( sd*vcd.adjoint()*md.template triangularView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Upper>()); |
| VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template triangularView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template triangularView<Lower>()); |
| VERIFY_IS_APPROX( sd*vcd.adjoint()*md.transpose().template triangularView<Upper>(), sd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Upper>()); |
| VERIFY_IS_APPROX(scd*vcd.adjoint()*md.transpose().template triangularView<Lower>(), scd*vcd.adjoint()*md.transpose().template cast<CD>().eval().template triangularView<Lower>()); |
| VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Lower>()); |
| VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template triangularView<Upper>()); |
| VERIFY_IS_APPROX( sd*vd.adjoint()*mcd.transpose().template triangularView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Lower>()); |
| VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.transpose().template triangularView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.transpose().template triangularView<Upper>()); |
| |
| // Not supported yet: trmm |
| // VERIFY_IS_APPROX(sd*mcd*md.template triangularView<Lower>(), sd*mcd*md.template cast<CD>().eval().template triangularView<Lower>()); |
| // VERIFY_IS_APPROX(scd*mcd*md.template triangularView<Upper>(), scd*mcd*md.template cast<CD>().eval().template triangularView<Upper>()); |
| // VERIFY_IS_APPROX(sd*md*mcd.template triangularView<Lower>(), sd*md.template cast<CD>().eval()*mcd.template triangularView<Lower>()); |
| // VERIFY_IS_APPROX(scd*md*mcd.template triangularView<Upper>(), scd*md.template cast<CD>().eval()*mcd.template triangularView<Upper>()); |
| |
| // Not supported yet: symv |
| // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); |
| // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Lower>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Lower>()); |
| // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Lower>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Lower>()); |
| // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); |
| |
| // Not supported yet: symm |
| // VERIFY_IS_APPROX(sd*vcd.adjoint()*md.template selfadjointView<Upper>(), sd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); |
| // VERIFY_IS_APPROX(scd*vcd.adjoint()*md.template selfadjointView<Upper>(), scd*vcd.adjoint()*md.template cast<CD>().eval().template selfadjointView<Upper>()); |
| // VERIFY_IS_APPROX(sd*vd.adjoint()*mcd.template selfadjointView<Upper>(), sd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); |
| // VERIFY_IS_APPROX(scd*vd.adjoint()*mcd.template selfadjointView<Upper>(), scd*vd.adjoint().template cast<CD>().eval()*mcd.template selfadjointView<Upper>()); |
| |
| rcd.setZero(); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * mcd * md), |
| Mat_cd((sd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = sd * md * mcd), |
| Mat_cd((sd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * mcd * md), |
| Mat_cd((scd * mcd * md.template cast<CD>().eval()).template triangularView<Upper>())); |
| VERIFY_IS_APPROX(Mat_cd(rcd.template triangularView<Upper>() = scd * md * mcd), |
| Mat_cd((scd * md.template cast<CD>().eval() * mcd).template triangularView<Upper>())); |
| |
| |
| VERIFY_IS_APPROX( md.array() * mcd.array(), md.template cast<CD>().eval().array() * mcd.array() ); |
| VERIFY_IS_APPROX( mcd.array() * md.array(), mcd.array() * md.template cast<CD>().eval().array() ); |
| |
| VERIFY_IS_APPROX( md.array() + mcd.array(), md.template cast<CD>().eval().array() + mcd.array() ); |
| VERIFY_IS_APPROX( mcd.array() + md.array(), mcd.array() + md.template cast<CD>().eval().array() ); |
| |
| VERIFY_IS_APPROX( md.array() - mcd.array(), md.template cast<CD>().eval().array() - mcd.array() ); |
| VERIFY_IS_APPROX( mcd.array() - md.array(), mcd.array() - md.template cast<CD>().eval().array() ); |
| |
| if(mcd.array().abs().minCoeff()>epsd) |
| { |
| VERIFY_IS_APPROX( md.array() / mcd.array(), md.template cast<CD>().eval().array() / mcd.array() ); |
| } |
| if(md.array().abs().minCoeff()>epsd) |
| { |
| VERIFY_IS_APPROX( mcd.array() / md.array(), mcd.array() / md.template cast<CD>().eval().array() ); |
| } |
| |
| if(md.array().abs().minCoeff()>epsd || mcd.array().abs().minCoeff()>epsd) |
| { |
| VERIFY_IS_APPROX( md.array().pow(mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) ); |
| VERIFY_IS_APPROX( mcd.array().pow(md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) ); |
| |
| VERIFY_IS_APPROX( pow(md.array(),mcd.array()), md.template cast<CD>().eval().array().pow(mcd.array()) ); |
| VERIFY_IS_APPROX( pow(mcd.array(),md.array()), mcd.array().pow(md.template cast<CD>().eval().array()) ); |
| } |
| |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd = md, md.template cast<CD>().eval() ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd += md, mcd + md.template cast<CD>().eval() ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd -= md, mcd - md.template cast<CD>().eval() ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.array() *= md.array(), mcd.array() * md.template cast<CD>().eval().array() ); |
| rcd = mcd; |
| if(md.array().abs().minCoeff()>epsd) |
| { |
| VERIFY_IS_APPROX( rcd.array() /= md.array(), mcd.array() / md.template cast<CD>().eval().array() ); |
| } |
| |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.noalias() += md + mcd*md, mcd + (md.template cast<CD>().eval()) + mcd*(md.template cast<CD>().eval())); |
| |
| VERIFY_IS_APPROX( rcd.noalias() = md*md, ((md*md).eval().template cast<CD>()) ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.noalias() += md*md, mcd + ((md*md).eval().template cast<CD>()) ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.noalias() -= md*md, mcd - ((md*md).eval().template cast<CD>()) ); |
| |
| VERIFY_IS_APPROX( rcd.noalias() = mcd + md*md, mcd + ((md*md).eval().template cast<CD>()) ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.noalias() += mcd + md*md, mcd + mcd + ((md*md).eval().template cast<CD>()) ); |
| rcd = mcd; |
| VERIFY_IS_APPROX( rcd.noalias() -= mcd + md*md, - ((md*md).eval().template cast<CD>()) ); |
| } |
| |
| EIGEN_DECLARE_TEST(mixingtypes) |
| { |
| g_called = false; // Silence -Wunneeded-internal-declaration. |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(mixingtypes<3>()); |
| CALL_SUBTEST_2(mixingtypes<4>()); |
| CALL_SUBTEST_3(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))); |
| |
| CALL_SUBTEST_4(mixingtypes<3>()); |
| CALL_SUBTEST_5(mixingtypes<4>()); |
| CALL_SUBTEST_6(mixingtypes<Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE))); |
| } |
| } |