| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #include "main.h" |
| #include <Eigen/SVD> |
| |
| template<typename MatrixType> void upperbidiag(const MatrixType& m) |
| { |
| const Index rows = m.rows(); |
| const Index cols = m.cols(); |
| |
| typedef Matrix<typename MatrixType::RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType; |
| typedef Matrix<typename MatrixType::Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TransposeMatrixType; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| internal::UpperBidiagonalization<MatrixType> ubd(a); |
| RealMatrixType b(rows, cols); |
| b.setZero(); |
| b.block(0,0,cols,cols) = ubd.bidiagonal(); |
| MatrixType c = ubd.householderU() * b * ubd.householderV().adjoint(); |
| VERIFY_IS_APPROX(a,c); |
| TransposeMatrixType d = ubd.householderV() * b.adjoint() * ubd.householderU().adjoint(); |
| VERIFY_IS_APPROX(a.adjoint(),d); |
| } |
| |
| EIGEN_DECLARE_TEST(upperbidiagonalization) |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1( upperbidiag(MatrixXf(3,3)) ); |
| CALL_SUBTEST_2( upperbidiag(MatrixXd(17,12)) ); |
| CALL_SUBTEST_3( upperbidiag(MatrixXcf(20,20)) ); |
| CALL_SUBTEST_4( upperbidiag(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(16,15)) ); |
| CALL_SUBTEST_5( upperbidiag(Matrix<float,6,4>()) ); |
| CALL_SUBTEST_6( upperbidiag(Matrix<float,5,5>()) ); |
| CALL_SUBTEST_7( upperbidiag(Matrix<double,4,3>()) ); |
| } |
| } |