| namespace Eigen { |
| |
| /** \eigenManualPage QuickRefPage Quick reference guide |
| |
| \eigenAutoToc |
| |
| <hr> |
| |
| <a href="#" class="top">top</a> |
| \section QuickRef_Headers Modules and Header files |
| |
| The Eigen library is divided in a Core module and several additional modules. Each module has a corresponding header file which has to be included in order to use the module. The \c %Dense and \c Eigen header files are provided to conveniently gain access to several modules at once. |
| |
| <table class="manual"> |
| <tr><th>Module</th><th>Header file</th><th>Contents</th></tr> |
| <tr ><td>\link Core_Module Core \endlink</td><td>\code#include <Eigen/Core>\endcode</td><td>Matrix and Array classes, basic linear algebra (including triangular and selfadjoint products), array manipulation</td></tr> |
| <tr class="alt"><td>\link Geometry_Module Geometry \endlink</td><td>\code#include <Eigen/Geometry>\endcode</td><td>Transform, Translation, Scaling, Rotation2D and 3D rotations (Quaternion, AngleAxis)</td></tr> |
| <tr ><td>\link LU_Module LU \endlink</td><td>\code#include <Eigen/LU>\endcode</td><td>Inverse, determinant, LU decompositions with solver (FullPivLU, PartialPivLU)</td></tr> |
| <tr class="alt"><td>\link Cholesky_Module Cholesky \endlink</td><td>\code#include <Eigen/Cholesky>\endcode</td><td>LLT and LDLT Cholesky factorization with solver</td></tr> |
| <tr ><td>\link Householder_Module Householder \endlink</td><td>\code#include <Eigen/Householder>\endcode</td><td>Householder transformations; this module is used by several linear algebra modules</td></tr> |
| <tr class="alt"><td>\link SVD_Module SVD \endlink</td><td>\code#include <Eigen/SVD>\endcode</td><td>SVD decompositions with least-squares solver (JacobiSVD, BDCSVD)</td></tr> |
| <tr ><td>\link QR_Module QR \endlink</td><td>\code#include <Eigen/QR>\endcode</td><td>QR decomposition with solver (HouseholderQR, ColPivHouseholderQR, FullPivHouseholderQR)</td></tr> |
| <tr class="alt"><td>\link Eigenvalues_Module Eigenvalues \endlink</td><td>\code#include <Eigen/Eigenvalues>\endcode</td><td>Eigenvalue, eigenvector decompositions (EigenSolver, SelfAdjointEigenSolver, ComplexEigenSolver)</td></tr> |
| <tr ><td>\link Sparse_Module Sparse \endlink</td><td>\code#include <Eigen/Sparse>\endcode</td><td>%Sparse matrix storage and related basic linear algebra (SparseMatrix, SparseVector) \n (see \ref SparseQuickRefPage for details on sparse modules)</td></tr> |
| <tr class="alt"><td></td><td>\code#include <Eigen/Dense>\endcode</td><td>Includes Core, Geometry, LU, Cholesky, SVD, QR, and Eigenvalues header files</td></tr> |
| <tr ><td></td><td>\code#include <Eigen/Eigen>\endcode</td><td>Includes %Dense and %Sparse header files (the whole Eigen library)</td></tr> |
| </table> |
| |
| <a href="#" class="top">top</a> |
| \section QuickRef_Types Array, matrix and vector types |
| |
| |
| \b Recall: Eigen provides two kinds of dense objects: mathematical matrices and vectors which are both represented by the template class Matrix, and general 1D and 2D arrays represented by the template class Array: |
| \code |
| typedef Matrix<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyMatrixType; |
| typedef Array<Scalar, RowsAtCompileTime, ColsAtCompileTime, Options> MyArrayType; |
| \endcode |
| |
| \li \c Scalar is the scalar type of the coefficients (e.g., \c float, \c double, \c bool, \c int, etc.). |
| \li \c RowsAtCompileTime and \c ColsAtCompileTime are the number of rows and columns of the matrix as known at compile-time or \c Dynamic. |
| \li \c Options can be \c ColMajor or \c RowMajor, default is \c ColMajor. (see class Matrix for more options) |
| |
| All combinations are allowed: you can have a matrix with a fixed number of rows and a dynamic number of columns, etc. The following are all valid: |
| \code |
| Matrix<double, 6, Dynamic> // Dynamic number of columns (heap allocation) |
| Matrix<double, Dynamic, 2> // Dynamic number of rows (heap allocation) |
| Matrix<double, Dynamic, Dynamic, RowMajor> // Fully dynamic, row major (heap allocation) |
| Matrix<double, 13, 3> // Fully fixed (usually allocated on stack) |
| \endcode |
| |
| In most cases, you can simply use one of the convenience typedefs for \ref matrixtypedefs "matrices" and \ref arraytypedefs "arrays". Some examples: |
| <table class="example"> |
| <tr><th>Matrices</th><th>Arrays</th></tr> |
| <tr><td>\code |
| Matrix<float,Dynamic,Dynamic> <=> MatrixXf |
| Matrix<double,Dynamic,1> <=> VectorXd |
| Matrix<int,1,Dynamic> <=> RowVectorXi |
| Matrix<float,3,3> <=> Matrix3f |
| Matrix<float,4,1> <=> Vector4f |
| \endcode</td><td>\code |
| Array<float,Dynamic,Dynamic> <=> ArrayXXf |
| Array<double,Dynamic,1> <=> ArrayXd |
| Array<int,1,Dynamic> <=> RowArrayXi |
| Array<float,3,3> <=> Array33f |
| Array<float,4,1> <=> Array4f |
| \endcode</td></tr> |
| </table> |
| |
| Conversion between the matrix and array worlds: |
| \code |
| Array44f a1, a2; |
| Matrix4f m1, m2; |
| m1 = a1 * a2; // coeffwise product, implicit conversion from array to matrix. |
| a1 = m1 * m2; // matrix product, implicit conversion from matrix to array. |
| a2 = a1 + m1.array(); // mixing array and matrix is forbidden |
| m2 = a1.matrix() + m1; // and explicit conversion is required. |
| ArrayWrapper<Matrix4f> m1a(m1); // m1a is an alias for m1.array(), they share the same coefficients |
| MatrixWrapper<Array44f> a1m(a1); |
| \endcode |
| |
| In the rest of this document we will use the following symbols to emphasize the features which are specifics to a given kind of object: |
| \li <a name="matrixonly"></a>\matrixworld linear algebra matrix and vector only |
| \li <a name="arrayonly"></a>\arrayworld array objects only |
| |
| \subsection QuickRef_Basics Basic matrix manipulation |
| |
| <table class="manual"> |
| <tr><th></th><th>1D objects</th><th>2D objects</th><th>Notes</th></tr> |
| <tr><td>Constructors</td> |
| <td>\code |
| Vector4d v4; |
| Vector2f v1(x, y); |
| Array3i v2(x, y, z); |
| Vector4d v3(x, y, z, w); |
| |
| VectorXf v5; // empty object |
| ArrayXf v6(size); |
| \endcode</td><td>\code |
| Matrix4f m1; |
| |
| |
| |
| |
| MatrixXf m5; // empty object |
| MatrixXf m6(nb_rows, nb_columns); |
| \endcode</td><td class="note"> |
| By default, the coefficients \n are left uninitialized</td></tr> |
| <tr class="alt"><td>Comma initializer</td> |
| <td>\code |
| Vector3f v1; v1 << x, y, z; |
| ArrayXf v2(4); v2 << 1, 2, 3, 4; |
| |
| \endcode</td><td>\code |
| Matrix3f m1; m1 << 1, 2, 3, |
| 4, 5, 6, |
| 7, 8, 9; |
| \endcode</td><td></td></tr> |
| |
| <tr><td>Comma initializer (bis)</td> |
| <td colspan="2"> |
| \include Tutorial_commainit_02.cpp |
| </td> |
| <td> |
| output: |
| \verbinclude Tutorial_commainit_02.out |
| </td> |
| </tr> |
| |
| <tr class="alt"><td>Runtime info</td> |
| <td>\code |
| vector.size(); |
| |
| vector.innerStride(); |
| vector.data(); |
| \endcode</td><td>\code |
| matrix.rows(); matrix.cols(); |
| matrix.innerSize(); matrix.outerSize(); |
| matrix.innerStride(); matrix.outerStride(); |
| matrix.data(); |
| \endcode</td><td class="note">Inner/Outer* are storage order dependent</td></tr> |
| <tr><td>Compile-time info</td> |
| <td colspan="2">\code |
| ObjectType::Scalar ObjectType::RowsAtCompileTime |
| ObjectType::RealScalar ObjectType::ColsAtCompileTime |
| ObjectType::Index ObjectType::SizeAtCompileTime |
| \endcode</td><td></td></tr> |
| <tr class="alt"><td>Resizing</td> |
| <td>\code |
| vector.resize(size); |
| |
| |
| vector.resizeLike(other_vector); |
| vector.conservativeResize(size); |
| \endcode</td><td>\code |
| matrix.resize(nb_rows, nb_cols); |
| matrix.resize(Eigen::NoChange, nb_cols); |
| matrix.resize(nb_rows, Eigen::NoChange); |
| matrix.resizeLike(other_matrix); |
| matrix.conservativeResize(nb_rows, nb_cols); |
| \endcode</td><td class="note">no-op if the new sizes match,<br/>otherwise data are lost<br/><br/>resizing with data preservation</td></tr> |
| |
| <tr><td>Coeff access with \n range checking</td> |
| <td>\code |
| vector(i) vector.x() |
| vector[i] vector.y() |
| vector.z() |
| vector.w() |
| \endcode</td><td>\code |
| matrix(i,j) |
| \endcode</td><td class="note">Range checking is disabled if \n NDEBUG or EIGEN_NO_DEBUG is defined</td></tr> |
| |
| <tr class="alt"><td>Coeff access without \n range checking</td> |
| <td>\code |
| vector.coeff(i) |
| vector.coeffRef(i) |
| \endcode</td><td>\code |
| matrix.coeff(i,j) |
| matrix.coeffRef(i,j) |
| \endcode</td><td></td></tr> |
| |
| <tr><td>Assignment/copy</td> |
| <td colspan="2">\code |
| object = expression; |
| object_of_float = expression_of_double.cast<float>(); |
| \endcode</td><td class="note">the destination is automatically resized (if possible)</td></tr> |
| |
| </table> |
| |
| \subsection QuickRef_PredefMat Predefined Matrices |
| |
| <table class="manual"> |
| <tr> |
| <th>Fixed-size matrix or vector</th> |
| <th>Dynamic-size matrix</th> |
| <th>Dynamic-size vector</th> |
| </tr> |
| <tr style="border-bottom-style: none;"> |
| <td> |
| \code |
| typedef {Matrix3f|Array33f} FixedXD; |
| FixedXD x; |
| |
| x = FixedXD::Zero(); |
| x = FixedXD::Ones(); |
| x = FixedXD::Constant(value); |
| x = FixedXD::Random(); |
| x = FixedXD::LinSpaced(size, low, high); |
| |
| x.setZero(); |
| x.setOnes(); |
| x.setConstant(value); |
| x.setRandom(); |
| x.setLinSpaced(size, low, high); |
| \endcode |
| </td> |
| <td> |
| \code |
| typedef {MatrixXf|ArrayXXf} Dynamic2D; |
| Dynamic2D x; |
| |
| x = Dynamic2D::Zero(rows, cols); |
| x = Dynamic2D::Ones(rows, cols); |
| x = Dynamic2D::Constant(rows, cols, value); |
| x = Dynamic2D::Random(rows, cols); |
| N/A |
| |
| x.setZero(rows, cols); |
| x.setOnes(rows, cols); |
| x.setConstant(rows, cols, value); |
| x.setRandom(rows, cols); |
| N/A |
| \endcode |
| </td> |
| <td> |
| \code |
| typedef {VectorXf|ArrayXf} Dynamic1D; |
| Dynamic1D x; |
| |
| x = Dynamic1D::Zero(size); |
| x = Dynamic1D::Ones(size); |
| x = Dynamic1D::Constant(size, value); |
| x = Dynamic1D::Random(size); |
| x = Dynamic1D::LinSpaced(size, low, high); |
| |
| x.setZero(size); |
| x.setOnes(size); |
| x.setConstant(size, value); |
| x.setRandom(size); |
| x.setLinSpaced(size, low, high); |
| \endcode |
| </td> |
| </tr> |
| |
| <tr><td colspan="3">Identity and \link MatrixBase::Unit basis vectors \endlink \matrixworld</td></tr> |
| <tr style="border-bottom-style: none;"> |
| <td> |
| \code |
| x = FixedXD::Identity(); |
| x.setIdentity(); |
| |
| Vector3f::UnitX() // 1 0 0 |
| Vector3f::UnitY() // 0 1 0 |
| Vector3f::UnitZ() // 0 0 1 |
| Vector4f::Unit(i) |
| x.setUnit(i); |
| \endcode |
| </td> |
| <td> |
| \code |
| x = Dynamic2D::Identity(rows, cols); |
| x.setIdentity(rows, cols); |
| |
| |
| |
| N/A |
| \endcode |
| </td> |
| <td>\code |
| N/A |
| |
| |
| VectorXf::Unit(size,i) |
| x.setUnit(size,i); |
| VectorXf::Unit(4,1) == Vector4f(0,1,0,0) |
| == Vector4f::UnitY() |
| \endcode |
| </td> |
| </tr> |
| </table> |
| |
| Note that it is allowed to call any of the \c set* functions to a dynamic-sized vector or matrix without passing new sizes. |
| For instance: |
| \code |
| MatrixXi M(3,3); |
| M.setIdentity(); |
| \endcode |
| |
| \subsection QuickRef_Map Mapping external arrays |
| |
| <table class="manual"> |
| <tr> |
| <td>Contiguous \n memory</td> |
| <td>\code |
| float data[] = {1,2,3,4}; |
| Map<Vector3f> v1(data); // uses v1 as a Vector3f object |
| Map<ArrayXf> v2(data,3); // uses v2 as a ArrayXf object |
| Map<Array22f> m1(data); // uses m1 as a Array22f object |
| Map<MatrixXf> m2(data,2,2); // uses m2 as a MatrixXf object |
| \endcode</td> |
| </tr> |
| <tr> |
| <td>Typical usage \n of strides</td> |
| <td>\code |
| float data[] = {1,2,3,4,5,6,7,8,9}; |
| Map<VectorXf,0,InnerStride<2> > v1(data,3); // = [1,3,5] |
| Map<VectorXf,0,InnerStride<> > v2(data,3,InnerStride<>(3)); // = [1,4,7] |
| Map<MatrixXf,0,OuterStride<3> > m2(data,2,3); // both lines |1,4,7| |
| Map<MatrixXf,0,OuterStride<> > m1(data,2,3,OuterStride<>(3)); // are equal to: |2,5,8| |
| \endcode</td> |
| </tr> |
| </table> |
| |
| |
| <a href="#" class="top">top</a> |
| \section QuickRef_ArithmeticOperators Arithmetic Operators |
| |
| <table class="manual"> |
| <tr><td> |
| add \n subtract</td><td>\code |
| mat3 = mat1 + mat2; mat3 += mat1; |
| mat3 = mat1 - mat2; mat3 -= mat1;\endcode |
| </td></tr> |
| <tr class="alt"><td> |
| scalar product</td><td>\code |
| mat3 = mat1 * s1; mat3 *= s1; mat3 = s1 * mat1; |
| mat3 = mat1 / s1; mat3 /= s1;\endcode |
| </td></tr> |
| <tr><td> |
| matrix/vector \n products \matrixworld</td><td>\code |
| col2 = mat1 * col1; |
| row2 = row1 * mat1; row1 *= mat1; |
| mat3 = mat1 * mat2; mat3 *= mat1; \endcode |
| </td></tr> |
| <tr class="alt"><td> |
| transposition \n adjoint \matrixworld</td><td>\code |
| mat1 = mat2.transpose(); mat1.transposeInPlace(); |
| mat1 = mat2.adjoint(); mat1.adjointInPlace(); |
| \endcode |
| </td></tr> |
| <tr><td> |
| \link MatrixBase::dot dot \endlink product \n inner product \matrixworld</td><td>\code |
| scalar = vec1.dot(vec2); |
| scalar = col1.adjoint() * col2; |
| scalar = (col1.adjoint() * col2).value();\endcode |
| </td></tr> |
| <tr class="alt"><td> |
| outer product \matrixworld</td><td>\code |
| mat = col1 * col2.transpose();\endcode |
| </td></tr> |
| |
| <tr><td> |
| \link MatrixBase::norm() norm \endlink \n \link MatrixBase::normalized() normalization \endlink \matrixworld</td><td>\code |
| scalar = vec1.norm(); scalar = vec1.squaredNorm() |
| vec2 = vec1.normalized(); vec1.normalize(); // inplace \endcode |
| </td></tr> |
| |
| <tr class="alt"><td> |
| \link MatrixBase::cross() cross product \endlink \matrixworld</td><td>\code |
| #include <Eigen/Geometry> |
| vec3 = vec1.cross(vec2);\endcode</td></tr> |
| </table> |
| |
| <a href="#" class="top">top</a> |
| \section QuickRef_Coeffwise Coefficient-wise \& Array operators |
| |
| In addition to the aforementioned operators, Eigen supports numerous coefficient-wise operator and functions. |
| Most of them unambiguously makes sense in array-world\arrayworld. The following operators are readily available for arrays, |
| or available through .array() for vectors and matrices: |
| |
| <table class="manual"> |
| <tr><td>Arithmetic operators</td><td>\code |
| array1 * array2 array1 / array2 array1 *= array2 array1 /= array2 |
| array1 + scalar array1 - scalar array1 += scalar array1 -= scalar |
| \endcode</td></tr> |
| <tr><td>Comparisons</td><td>\code |
| array1 < array2 array1 > array2 array1 < scalar array1 > scalar |
| array1 <= array2 array1 >= array2 array1 <= scalar array1 >= scalar |
| array1 == array2 array1 != array2 array1 == scalar array1 != scalar |
| array1.min(array2) array1.max(array2) array1.min(scalar) array1.max(scalar) |
| \endcode</td></tr> |
| <tr><td>Trigo, power, and \n misc functions \n and the STL-like variants</td><td>\code |
| array1.abs2() |
| array1.abs() abs(array1) |
| array1.sqrt() sqrt(array1) |
| array1.log() log(array1) |
| array1.log10() log10(array1) |
| array1.exp() exp(array1) |
| array1.pow(array2) pow(array1,array2) |
| array1.pow(scalar) pow(array1,scalar) |
| pow(scalar,array2) |
| array1.square() |
| array1.cube() |
| array1.inverse() |
| |
| array1.sin() sin(array1) |
| array1.cos() cos(array1) |
| array1.tan() tan(array1) |
| array1.asin() asin(array1) |
| array1.acos() acos(array1) |
| array1.atan() atan(array1) |
| array1.sinh() sinh(array1) |
| array1.cosh() cosh(array1) |
| array1.tanh() tanh(array1) |
| array1.arg() arg(array1) |
| |
| array1.floor() floor(array1) |
| array1.ceil() ceil(array1) |
| array1.round() round(aray1) |
| |
| array1.isFinite() isfinite(array1) |
| array1.isInf() isinf(array1) |
| array1.isNaN() isnan(array1) |
| \endcode |
| </td></tr> |
| </table> |
| |
| |
| The following coefficient-wise operators are available for all kind of expressions (matrices, vectors, and arrays), and for both real or complex scalar types: |
| |
| <table class="manual"> |
| <tr><th>Eigen's API</th><th>STL-like APIs\arrayworld </th><th>Comments</th></tr> |
| <tr><td>\code |
| mat1.real() |
| mat1.imag() |
| mat1.conjugate() |
| \endcode |
| </td><td>\code |
| real(array1) |
| imag(array1) |
| conj(array1) |
| \endcode |
| </td><td> |
| \code |
| // read-write, no-op for real expressions |
| // read-only for real, read-write for complexes |
| // no-op for real expressions |
| \endcode |
| </td></tr> |
| </table> |
| |
| Some coefficient-wise operators are readily available for for matrices and vectors through the following cwise* methods: |
| <table class="manual"> |
| <tr><th>Matrix API \matrixworld</th><th>Via Array conversions</th></tr> |
| <tr><td>\code |
| mat1.cwiseMin(mat2) mat1.cwiseMin(scalar) |
| mat1.cwiseMax(mat2) mat1.cwiseMax(scalar) |
| mat1.cwiseAbs2() |
| mat1.cwiseAbs() |
| mat1.cwiseSqrt() |
| mat1.cwiseInverse() |
| mat1.cwiseProduct(mat2) |
| mat1.cwiseQuotient(mat2) |
| mat1.cwiseEqual(mat2) mat1.cwiseEqual(scalar) |
| mat1.cwiseNotEqual(mat2) |
| \endcode |
| </td><td>\code |
| mat1.array().min(mat2.array()) mat1.array().min(scalar) |
| mat1.array().max(mat2.array()) mat1.array().max(scalar) |
| mat1.array().abs2() |
| mat1.array().abs() |
| mat1.array().sqrt() |
| mat1.array().inverse() |
| mat1.array() * mat2.array() |
| mat1.array() / mat2.array() |
| mat1.array() == mat2.array() mat1.array() == scalar |
| mat1.array() != mat2.array() |
| \endcode</td></tr> |
| </table> |
| The main difference between the two API is that the one based on cwise* methods returns an expression in the matrix world, |
| while the second one (based on .array()) returns an array expression. |
| Recall that .array() has no cost, it only changes the available API and interpretation of the data. |
| |
| It is also very simple to apply any user defined function \c foo using DenseBase::unaryExpr together with <a href="http://en.cppreference.com/w/cpp/utility/functional/ptr_fun">std::ptr_fun</a> (c++03), <a href="http://en.cppreference.com/w/cpp/utility/functional/ref">std::ref</a> (c++11), or <a href="http://en.cppreference.com/w/cpp/language/lambda">lambdas</a> (c++11): |
| \code |
| mat1.unaryExpr(std::ptr_fun(foo)); |
| mat1.unaryExpr(std::ref(foo)); |
| mat1.unaryExpr([](double x) { return foo(x); }); |
| \endcode |
| |
| |
| <a href="#" class="top">top</a> |
| \section QuickRef_Reductions Reductions |
| |
| Eigen provides several reduction methods such as: |
| \link DenseBase::minCoeff() minCoeff() \endlink, \link DenseBase::maxCoeff() maxCoeff() \endlink, |
| \link DenseBase::sum() sum() \endlink, \link DenseBase::prod() prod() \endlink, |
| \link MatrixBase::trace() trace() \endlink \matrixworld, |
| \link MatrixBase::norm() norm() \endlink \matrixworld, \link MatrixBase::squaredNorm() squaredNorm() \endlink \matrixworld, |
| \link DenseBase::all() all() \endlink, and \link DenseBase::any() any() \endlink. |
| All reduction operations can be done matrix-wise, |
| \link DenseBase::colwise() column-wise \endlink or |
| \link DenseBase::rowwise() row-wise \endlink. Usage example: |
| <table class="manual"> |
| <tr><td rowspan="3" style="border-right-style:dashed;vertical-align:middle">\code |
| 5 3 1 |
| mat = 2 7 8 |
| 9 4 6 \endcode |
| </td> <td>\code mat.minCoeff(); \endcode</td><td>\code 1 \endcode</td></tr> |
| <tr class="alt"><td>\code mat.colwise().minCoeff(); \endcode</td><td>\code 2 3 1 \endcode</td></tr> |
| <tr style="vertical-align:middle"><td>\code mat.rowwise().minCoeff(); \endcode</td><td>\code |
| 1 |
| 2 |
| 4 |
| \endcode</td></tr> |
| </table> |
| |
| Special versions of \link DenseBase::minCoeff(IndexType*,IndexType*) const minCoeff \endlink and \link DenseBase::maxCoeff(IndexType*,IndexType*) const maxCoeff \endlink: |
| \code |
| int i, j; |
| s = vector.minCoeff(&i); // s == vector[i] |
| s = matrix.maxCoeff(&i, &j); // s == matrix(i,j) |
| \endcode |
| Typical use cases of all() and any(): |
| \code |
| if((array1 > 0).all()) ... // if all coefficients of array1 are greater than 0 ... |
| if((array1 < array2).any()) ... // if there exist a pair i,j such that array1(i,j) < array2(i,j) ... |
| \endcode |
| |
| |
| <a href="#" class="top">top</a>\section QuickRef_Blocks Sub-matrices |
| |
| <div class="warningbox"> |
| <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> |
| %Eigen 3.4 supports a much improved API for sub-matrices, including, |
| slicing and indexing from arrays: \ref TutorialSlicingIndexing |
| </div> |
| |
| Read-write access to a \link DenseBase::col(Index) column \endlink |
| or a \link DenseBase::row(Index) row \endlink of a matrix (or array): |
| \code |
| mat1.row(i) = mat2.col(j); |
| mat1.col(j1).swap(mat1.col(j2)); |
| \endcode |
| |
| Read-write access to sub-vectors: |
| <table class="manual"> |
| <tr> |
| <th>Default versions</th> |
| <th>Optimized versions when the size \n is known at compile time</th></tr> |
| <th></th> |
| |
| <tr><td>\code vec1.head(n)\endcode</td><td>\code vec1.head<n>()\endcode</td><td>the first \c n coeffs </td></tr> |
| <tr><td>\code vec1.tail(n)\endcode</td><td>\code vec1.tail<n>()\endcode</td><td>the last \c n coeffs </td></tr> |
| <tr><td>\code vec1.segment(pos,n)\endcode</td><td>\code vec1.segment<n>(pos)\endcode</td> |
| <td>the \c n coeffs in the \n range [\c pos : \c pos + \c n - 1]</td></tr> |
| <tr class="alt"><td colspan="3"> |
| |
| Read-write access to sub-matrices:</td></tr> |
| <tr> |
| <td>\code mat1.block(i,j,rows,cols)\endcode |
| \link DenseBase::block(Index,Index,Index,Index) (more) \endlink</td> |
| <td>\code mat1.block<rows,cols>(i,j)\endcode |
| \link DenseBase::block(Index,Index) (more) \endlink</td> |
| <td>the \c rows x \c cols sub-matrix \n starting from position (\c i,\c j)</td></tr> |
| <tr><td>\code |
| mat1.topLeftCorner(rows,cols) |
| mat1.topRightCorner(rows,cols) |
| mat1.bottomLeftCorner(rows,cols) |
| mat1.bottomRightCorner(rows,cols)\endcode |
| <td>\code |
| mat1.topLeftCorner<rows,cols>() |
| mat1.topRightCorner<rows,cols>() |
| mat1.bottomLeftCorner<rows,cols>() |
| mat1.bottomRightCorner<rows,cols>()\endcode |
| <td>the \c rows x \c cols sub-matrix \n taken in one of the four corners</td></tr> |
| <tr><td>\code |
| mat1.topRows(rows) |
| mat1.bottomRows(rows) |
| mat1.leftCols(cols) |
| mat1.rightCols(cols)\endcode |
| <td>\code |
| mat1.topRows<rows>() |
| mat1.bottomRows<rows>() |
| mat1.leftCols<cols>() |
| mat1.rightCols<cols>()\endcode |
| <td>specialized versions of block() \n when the block fit two corners</td></tr> |
| </table> |
| |
| |
| |
| <a href="#" class="top">top</a>\section QuickRef_Misc Miscellaneous operations |
| |
| <div class="warningbox"> |
| <strong>PLEASE HELP US IMPROVING THIS SECTION.</strong> |
| %Eigen 3.4 supports a new API for reshaping: \ref TutorialReshape |
| </div> |
| |
| \subsection QuickRef_Reverse Reverse |
| Vectors, rows, and/or columns of a matrix can be reversed (see DenseBase::reverse(), DenseBase::reverseInPlace(), VectorwiseOp::reverse()). |
| \code |
| vec.reverse() mat.colwise().reverse() mat.rowwise().reverse() |
| vec.reverseInPlace() |
| \endcode |
| |
| \subsection QuickRef_Replicate Replicate |
| Vectors, matrices, rows, and/or columns can be replicated in any direction (see DenseBase::replicate(), VectorwiseOp::replicate()) |
| \code |
| vec.replicate(times) vec.replicate<Times> |
| mat.replicate(vertical_times, horizontal_times) mat.replicate<VerticalTimes, HorizontalTimes>() |
| mat.colwise().replicate(vertical_times, horizontal_times) mat.colwise().replicate<VerticalTimes, HorizontalTimes>() |
| mat.rowwise().replicate(vertical_times, horizontal_times) mat.rowwise().replicate<VerticalTimes, HorizontalTimes>() |
| \endcode |
| |
| |
| <a href="#" class="top">top</a>\section QuickRef_DiagTriSymm Diagonal, Triangular, and Self-adjoint matrices |
| (matrix world \matrixworld) |
| |
| \subsection QuickRef_Diagonal Diagonal matrices |
| |
| <table class="example"> |
| <tr><th>Operation</th><th>Code</th></tr> |
| <tr><td> |
| view a vector \link MatrixBase::asDiagonal() as a diagonal matrix \endlink \n </td><td>\code |
| mat1 = vec1.asDiagonal();\endcode |
| </td></tr> |
| <tr><td> |
| Declare a diagonal matrix</td><td>\code |
| DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); |
| diag1.diagonal() = vector;\endcode |
| </td></tr> |
| <tr><td>Access the \link MatrixBase::diagonal() diagonal \endlink and \link MatrixBase::diagonal(Index) super/sub diagonals \endlink of a matrix as a vector (read/write)</td> |
| <td>\code |
| vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal |
| vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal |
| vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal |
| vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal |
| vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal |
| \endcode</td> |
| </tr> |
| |
| <tr><td>Optimized products and inverse</td> |
| <td>\code |
| mat3 = scalar * diag1 * mat1; |
| mat3 += scalar * mat1 * vec1.asDiagonal(); |
| mat3 = vec1.asDiagonal().inverse() * mat1 |
| mat3 = mat1 * diag1.inverse() |
| \endcode</td> |
| </tr> |
| |
| </table> |
| |
| \subsection QuickRef_TriangularView Triangular views |
| |
| TriangularView gives a view on a triangular part of a dense matrix and allows to perform optimized operations on it. The opposite triangular part is never referenced and can be used to store other information. |
| |
| \note The .triangularView() template member function requires the \c template keyword if it is used on an |
| object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. |
| |
| <table class="example"> |
| <tr><th>Operation</th><th>Code</th></tr> |
| <tr><td> |
| Reference to a triangular with optional \n |
| unit or null diagonal (read/write): |
| </td><td>\code |
| m.triangularView<Xxx>() |
| \endcode \n |
| \c Xxx = ::Upper, ::Lower, ::StrictlyUpper, ::StrictlyLower, ::UnitUpper, ::UnitLower |
| </td></tr> |
| <tr><td> |
| Writing to a specific triangular part:\n (only the referenced triangular part is evaluated) |
| </td><td>\code |
| m1.triangularView<Eigen::Lower>() = m2 + m3 \endcode |
| </td></tr> |
| <tr><td> |
| Conversion to a dense matrix setting the opposite triangular part to zero: |
| </td><td>\code |
| m2 = m1.triangularView<Eigen::UnitUpper>()\endcode |
| </td></tr> |
| <tr><td> |
| Products: |
| </td><td>\code |
| m3 += s1 * m1.adjoint().triangularView<Eigen::UnitUpper>() * m2 |
| m3 -= s1 * m2.conjugate() * m1.adjoint().triangularView<Eigen::Lower>() \endcode |
| </td></tr> |
| <tr><td> |
| Solving linear equations:\n |
| \f$ M_2 := L_1^{-1} M_2 \f$ \n |
| \f$ M_3 := {L_1^*}^{-1} M_3 \f$ \n |
| \f$ M_4 := M_4 U_1^{-1} \f$ |
| </td><td>\n \code |
| L1.triangularView<Eigen::UnitLower>().solveInPlace(M2) |
| L1.triangularView<Eigen::Lower>().adjoint().solveInPlace(M3) |
| U1.triangularView<Eigen::Upper>().solveInPlace<OnTheRight>(M4)\endcode |
| </td></tr> |
| </table> |
| |
| \subsection QuickRef_SelfadjointMatrix Symmetric/selfadjoint views |
| |
| Just as for triangular matrix, you can reference any triangular part of a square matrix to see it as a selfadjoint |
| matrix and perform special and optimized operations. Again the opposite triangular part is never referenced and can be |
| used to store other information. |
| |
| \note The .selfadjointView() template member function requires the \c template keyword if it is used on an |
| object of a type that depends on a template parameter; see \ref TopicTemplateKeyword for details. |
| |
| <table class="example"> |
| <tr><th>Operation</th><th>Code</th></tr> |
| <tr><td> |
| Conversion to a dense matrix: |
| </td><td>\code |
| m2 = m.selfadjointView<Eigen::Lower>();\endcode |
| </td></tr> |
| <tr><td> |
| Product with another general matrix or vector: |
| </td><td>\code |
| m3 = s1 * m1.conjugate().selfadjointView<Eigen::Upper>() * m3; |
| m3 -= s1 * m3.adjoint() * m1.selfadjointView<Eigen::Lower>();\endcode |
| </td></tr> |
| <tr><td> |
| Rank 1 and rank K update: \n |
| \f$ upper(M_1) \mathrel{{+}{=}} s_1 M_2 M_2^* \f$ \n |
| \f$ lower(M_1) \mathbin{{-}{=}} M_2^* M_2 \f$ |
| </td><td>\n \code |
| M1.selfadjointView<Eigen::Upper>().rankUpdate(M2,s1); |
| M1.selfadjointView<Eigen::Lower>().rankUpdate(M2.adjoint(),-1); \endcode |
| </td></tr> |
| <tr><td> |
| Rank 2 update: (\f$ M \mathrel{{+}{=}} s u v^* + s v u^* \f$) |
| </td><td>\code |
| M.selfadjointView<Eigen::Upper>().rankUpdate(u,v,s); |
| \endcode |
| </td></tr> |
| <tr><td> |
| Solving linear equations:\n(\f$ M_2 := M_1^{-1} M_2 \f$) |
| </td><td>\code |
| // via a standard Cholesky factorization |
| m2 = m1.selfadjointView<Eigen::Upper>().llt().solve(m2); |
| // via a Cholesky factorization with pivoting |
| m2 = m1.selfadjointView<Eigen::Lower>().ldlt().solve(m2); |
| \endcode |
| </td></tr> |
| </table> |
| |
| */ |
| |
| /* |
| <table class="tutorial_code"> |
| <tr><td> |
| \link MatrixBase::asDiagonal() make a diagonal matrix \endlink \n from a vector </td><td>\code |
| mat1 = vec1.asDiagonal();\endcode |
| </td></tr> |
| <tr><td> |
| Declare a diagonal matrix</td><td>\code |
| DiagonalMatrix<Scalar,SizeAtCompileTime> diag1(size); |
| diag1.diagonal() = vector;\endcode |
| </td></tr> |
| <tr><td>Access \link MatrixBase::diagonal() the diagonal and super/sub diagonals of a matrix \endlink as a vector (read/write)</td> |
| <td>\code |
| vec1 = mat1.diagonal(); mat1.diagonal() = vec1; // main diagonal |
| vec1 = mat1.diagonal(+n); mat1.diagonal(+n) = vec1; // n-th super diagonal |
| vec1 = mat1.diagonal(-n); mat1.diagonal(-n) = vec1; // n-th sub diagonal |
| vec1 = mat1.diagonal<1>(); mat1.diagonal<1>() = vec1; // first super diagonal |
| vec1 = mat1.diagonal<-2>(); mat1.diagonal<-2>() = vec1; // second sub diagonal |
| \endcode</td> |
| </tr> |
| |
| <tr><td>View on a triangular part of a matrix (read/write)</td> |
| <td>\code |
| mat2 = mat1.triangularView<Xxx>(); |
| // Xxx = Upper, Lower, StrictlyUpper, StrictlyLower, UnitUpper, UnitLower |
| mat1.triangularView<Upper>() = mat2 + mat3; // only the upper part is evaluated and referenced |
| \endcode</td></tr> |
| |
| <tr><td>View a triangular part as a symmetric/self-adjoint matrix (read/write)</td> |
| <td>\code |
| mat2 = mat1.selfadjointView<Xxx>(); // Xxx = Upper or Lower |
| mat1.selfadjointView<Upper>() = mat2 + mat2.adjoint(); // evaluated and write to the upper triangular part only |
| \endcode</td></tr> |
| |
| </table> |
| |
| Optimized products: |
| \code |
| mat3 += scalar * vec1.asDiagonal() * mat1 |
| mat3 += scalar * mat1 * vec1.asDiagonal() |
| mat3.noalias() += scalar * mat1.triangularView<Xxx>() * mat2 |
| mat3.noalias() += scalar * mat2 * mat1.triangularView<Xxx>() |
| mat3.noalias() += scalar * mat1.selfadjointView<Upper or Lower>() * mat2 |
| mat3.noalias() += scalar * mat2 * mat1.selfadjointView<Upper or Lower>() |
| mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2); |
| mat1.selfadjointView<Upper or Lower>().rankUpdate(mat2.adjoint(), scalar); |
| \endcode |
| |
| Inverse products: (all are optimized) |
| \code |
| mat3 = vec1.asDiagonal().inverse() * mat1 |
| mat3 = mat1 * diag1.inverse() |
| mat1.triangularView<Xxx>().solveInPlace(mat2) |
| mat1.triangularView<Xxx>().solveInPlace<OnTheRight>(mat2) |
| mat2 = mat1.selfadjointView<Upper or Lower>().llt().solve(mat2) |
| \endcode |
| |
| */ |
| } |