| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // Copyright (C) 2009 Kenneth Riddile <kfriddile@yahoo.com> |
| // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> |
| // Copyright (C) 2010 Thomas Capricelli <orzel@freehackers.org> |
| // Copyright (C) 2013 Pavel Holoborodko <pavel@holoborodko.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| |
| /***************************************************************************** |
| *** Platform checks for aligned malloc functions *** |
| *****************************************************************************/ |
| |
| #ifndef EIGEN_MEMORY_H |
| #define EIGEN_MEMORY_H |
| |
| #ifndef EIGEN_MALLOC_ALREADY_ALIGNED |
| |
| // Try to determine automatically if malloc is already aligned. |
| |
| // On 64-bit systems, glibc's malloc returns 16-byte-aligned pointers, see: |
| // http://www.gnu.org/s/libc/manual/html_node/Aligned-Memory-Blocks.html |
| // This is true at least since glibc 2.8. |
| // This leaves the question how to detect 64-bit. According to this document, |
| // http://gcc.fyxm.net/summit/2003/Porting%20to%2064%20bit.pdf |
| // page 114, "[The] LP64 model [...] is used by all 64-bit UNIX ports" so it's indeed |
| // quite safe, at least within the context of glibc, to equate 64-bit with LP64. |
| #if defined(__GLIBC__) && ((__GLIBC__>=2 && __GLIBC_MINOR__ >= 8) || __GLIBC__>2) \ |
| && defined(__LP64__) && ! defined( __SANITIZE_ADDRESS__ ) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
| #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| // FreeBSD 6 seems to have 16-byte aligned malloc |
| // See http://svn.freebsd.org/viewvc/base/stable/6/lib/libc/stdlib/malloc.c?view=markup |
| // FreeBSD 7 seems to have 16-byte aligned malloc except on ARM and MIPS architectures |
| // See http://svn.freebsd.org/viewvc/base/stable/7/lib/libc/stdlib/malloc.c?view=markup |
| #if defined(__FreeBSD__) && !(EIGEN_ARCH_ARM || EIGEN_ARCH_MIPS) && (EIGEN_DEFAULT_ALIGN_BYTES == 16) |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #if (EIGEN_OS_MAC && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
| || (EIGEN_OS_WIN64 && (EIGEN_DEFAULT_ALIGN_BYTES == 16)) \ |
| || EIGEN_GLIBC_MALLOC_ALREADY_ALIGNED \ |
| || EIGEN_FREEBSD_MALLOC_ALREADY_ALIGNED |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 1 |
| #else |
| #define EIGEN_MALLOC_ALREADY_ALIGNED 0 |
| #endif |
| |
| #endif |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| EIGEN_DEVICE_FUNC |
| inline void throw_std_bad_alloc() |
| { |
| #ifdef EIGEN_EXCEPTIONS |
| throw std::bad_alloc(); |
| #else |
| std::size_t huge = static_cast<std::size_t>(-1); |
| #if defined(EIGEN_HIPCC) |
| // |
| // calls to "::operator new" are to be treated as opaque function calls (i.e no inlining), |
| // and as a consequence the code in the #else block triggers the hipcc warning : |
| // "no overloaded function has restriction specifiers that are compatible with the ambient context" |
| // |
| // "throw_std_bad_alloc" has the EIGEN_DEVICE_FUNC attribute, so it seems that hipcc expects |
| // the same on "operator new" |
| // Reverting code back to the old version in this #if block for the hipcc compiler |
| // |
| new int[huge]; |
| #else |
| void* unused = ::operator new(huge); |
| #endif |
| #endif |
| } |
| |
| /***************************************************************************** |
| *** Implementation of handmade aligned functions *** |
| *****************************************************************************/ |
| |
| /* ----- Hand made implementations of aligned malloc/free and realloc ----- */ |
| |
| /** \internal Like malloc, but the returned pointer is guaranteed to be 16-byte aligned. |
| * Fast, but wastes 16 additional bytes of memory. Does not throw any exception. |
| */ |
| EIGEN_DEVICE_FUNC inline void* handmade_aligned_malloc(std::size_t size, std::size_t alignment = EIGEN_DEFAULT_ALIGN_BYTES) |
| { |
| eigen_assert(alignment >= sizeof(void*) && (alignment & (alignment-1)) == 0 && "Alignment must be at least sizeof(void*) and a power of 2"); |
| |
| EIGEN_USING_STD(malloc) |
| void *original = malloc(size+alignment); |
| |
| if (original == 0) return 0; |
| void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(alignment-1))) + alignment); |
| *(reinterpret_cast<void**>(aligned) - 1) = original; |
| return aligned; |
| } |
| |
| /** \internal Frees memory allocated with handmade_aligned_malloc */ |
| EIGEN_DEVICE_FUNC inline void handmade_aligned_free(void *ptr) |
| { |
| if (ptr) { |
| EIGEN_USING_STD(free) |
| free(*(reinterpret_cast<void**>(ptr) - 1)); |
| } |
| } |
| |
| /** \internal |
| * \brief Reallocates aligned memory. |
| * Since we know that our handmade version is based on std::malloc |
| * we can use std::realloc to implement efficient reallocation. |
| */ |
| inline void* handmade_aligned_realloc(void* ptr, std::size_t size, std::size_t = 0) |
| { |
| if (ptr == 0) return handmade_aligned_malloc(size); |
| void *original = *(reinterpret_cast<void**>(ptr) - 1); |
| std::ptrdiff_t previous_offset = static_cast<char *>(ptr)-static_cast<char *>(original); |
| original = std::realloc(original,size+EIGEN_DEFAULT_ALIGN_BYTES); |
| if (original == 0) return 0; |
| void *aligned = reinterpret_cast<void*>((reinterpret_cast<std::size_t>(original) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) + EIGEN_DEFAULT_ALIGN_BYTES); |
| void *previous_aligned = static_cast<char *>(original)+previous_offset; |
| if(aligned!=previous_aligned) |
| std::memmove(aligned, previous_aligned, size); |
| |
| *(reinterpret_cast<void**>(aligned) - 1) = original; |
| return aligned; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of portable aligned versions of malloc/free/realloc *** |
| *****************************************************************************/ |
| |
| #ifdef EIGEN_NO_MALLOC |
| EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| { |
| eigen_assert(false && "heap allocation is forbidden (EIGEN_NO_MALLOC is defined)"); |
| } |
| #elif defined EIGEN_RUNTIME_NO_MALLOC |
| EIGEN_DEVICE_FUNC inline bool is_malloc_allowed_impl(bool update, bool new_value = false) |
| { |
| static bool value = true; |
| if (update == 1) |
| value = new_value; |
| return value; |
| } |
| EIGEN_DEVICE_FUNC inline bool is_malloc_allowed() { return is_malloc_allowed_impl(false); } |
| EIGEN_DEVICE_FUNC inline bool set_is_malloc_allowed(bool new_value) { return is_malloc_allowed_impl(true, new_value); } |
| EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| { |
| eigen_assert(is_malloc_allowed() && "heap allocation is forbidden (EIGEN_RUNTIME_NO_MALLOC is defined and g_is_malloc_allowed is false)"); |
| } |
| #else |
| EIGEN_DEVICE_FUNC inline void check_that_malloc_is_allowed() |
| {} |
| #endif |
| |
| /** \internal Allocates \a size bytes. The returned pointer is guaranteed to have 16 or 32 bytes alignment depending on the requirements. |
| * On allocation error, the returned pointer is null, and std::bad_alloc is thrown. |
| */ |
| EIGEN_DEVICE_FUNC inline void* aligned_malloc(std::size_t size) |
| { |
| check_that_malloc_is_allowed(); |
| |
| void *result; |
| #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| |
| EIGEN_USING_STD(malloc) |
| result = malloc(size); |
| |
| #if EIGEN_DEFAULT_ALIGN_BYTES==16 |
| eigen_assert((size<16 || (std::size_t(result)%16)==0) && "System's malloc returned an unaligned pointer. Compile with EIGEN_MALLOC_ALREADY_ALIGNED=0 to fallback to handmade aligned memory allocator."); |
| #endif |
| #else |
| result = handmade_aligned_malloc(size); |
| #endif |
| |
| if(!result && size) |
| throw_std_bad_alloc(); |
| |
| return result; |
| } |
| |
| /** \internal Frees memory allocated with aligned_malloc. */ |
| EIGEN_DEVICE_FUNC inline void aligned_free(void *ptr) |
| { |
| #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| |
| EIGEN_USING_STD(free) |
| free(ptr); |
| |
| #else |
| handmade_aligned_free(ptr); |
| #endif |
| } |
| |
| /** |
| * \internal |
| * \brief Reallocates an aligned block of memory. |
| * \throws std::bad_alloc on allocation failure |
| */ |
| inline void* aligned_realloc(void *ptr, std::size_t new_size, std::size_t old_size) |
| { |
| EIGEN_UNUSED_VARIABLE(old_size) |
| |
| void *result; |
| #if (EIGEN_DEFAULT_ALIGN_BYTES==0) || EIGEN_MALLOC_ALREADY_ALIGNED |
| result = std::realloc(ptr,new_size); |
| #else |
| result = handmade_aligned_realloc(ptr,new_size,old_size); |
| #endif |
| |
| if (!result && new_size) |
| throw_std_bad_alloc(); |
| |
| return result; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of conditionally aligned functions *** |
| *****************************************************************************/ |
| |
| /** \internal Allocates \a size bytes. If Align is true, then the returned ptr is 16-byte-aligned. |
| * On allocation error, the returned pointer is null, and a std::bad_alloc is thrown. |
| */ |
| template<bool Align> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc(std::size_t size) |
| { |
| return aligned_malloc(size); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline void* conditional_aligned_malloc<false>(std::size_t size) |
| { |
| check_that_malloc_is_allowed(); |
| |
| EIGEN_USING_STD(malloc) |
| void *result = malloc(size); |
| |
| if(!result && size) |
| throw_std_bad_alloc(); |
| return result; |
| } |
| |
| /** \internal Frees memory allocated with conditional_aligned_malloc */ |
| template<bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_free(void *ptr) |
| { |
| aligned_free(ptr); |
| } |
| |
| template<> EIGEN_DEVICE_FUNC inline void conditional_aligned_free<false>(void *ptr) |
| { |
| EIGEN_USING_STD(free) |
| free(ptr); |
| } |
| |
| template<bool Align> inline void* conditional_aligned_realloc(void* ptr, std::size_t new_size, std::size_t old_size) |
| { |
| return aligned_realloc(ptr, new_size, old_size); |
| } |
| |
| template<> inline void* conditional_aligned_realloc<false>(void* ptr, std::size_t new_size, std::size_t) |
| { |
| return std::realloc(ptr, new_size); |
| } |
| |
| /***************************************************************************** |
| *** Construction/destruction of array elements *** |
| *****************************************************************************/ |
| |
| /** \internal Destructs the elements of an array. |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> EIGEN_DEVICE_FUNC inline void destruct_elements_of_array(T *ptr, std::size_t size) |
| { |
| // always destruct an array starting from the end. |
| if(ptr) |
| while(size) ptr[--size].~T(); |
| } |
| |
| /** \internal Constructs the elements of an array. |
| * The \a size parameter tells on how many objects to call the constructor of T. |
| */ |
| template<typename T> EIGEN_DEVICE_FUNC inline T* construct_elements_of_array(T *ptr, std::size_t size) |
| { |
| std::size_t i; |
| EIGEN_TRY |
| { |
| for (i = 0; i < size; ++i) ::new (ptr + i) T; |
| return ptr; |
| } |
| EIGEN_CATCH(...) |
| { |
| destruct_elements_of_array(ptr, i); |
| EIGEN_THROW; |
| } |
| return NULL; |
| } |
| |
| /***************************************************************************** |
| *** Implementation of aligned new/delete-like functions *** |
| *****************************************************************************/ |
| |
| template<typename T> |
| EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void check_size_for_overflow(std::size_t size) |
| { |
| if(size > std::size_t(-1) / sizeof(T)) |
| throw_std_bad_alloc(); |
| } |
| |
| /** \internal Allocates \a size objects of type T. The returned pointer is guaranteed to have 16 bytes alignment. |
| * On allocation error, the returned pointer is undefined, but a std::bad_alloc is thrown. |
| * The default constructor of T is called. |
| */ |
| template<typename T> EIGEN_DEVICE_FUNC inline T* aligned_new(std::size_t size) |
| { |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(aligned_malloc(sizeof(T)*size)); |
| EIGEN_TRY |
| { |
| return construct_elements_of_array(result, size); |
| } |
| EIGEN_CATCH(...) |
| { |
| aligned_free(result); |
| EIGEN_THROW; |
| } |
| return result; |
| } |
| |
| template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new(std::size_t size) |
| { |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| EIGEN_TRY |
| { |
| return construct_elements_of_array(result, size); |
| } |
| EIGEN_CATCH(...) |
| { |
| conditional_aligned_free<Align>(result); |
| EIGEN_THROW; |
| } |
| return result; |
| } |
| |
| /** \internal Deletes objects constructed with aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T> EIGEN_DEVICE_FUNC inline void aligned_delete(T *ptr, std::size_t size) |
| { |
| destruct_elements_of_array<T>(ptr, size); |
| Eigen::internal::aligned_free(ptr); |
| } |
| |
| /** \internal Deletes objects constructed with conditional_aligned_new |
| * The \a size parameters tells on how many objects to call the destructor of T. |
| */ |
| template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete(T *ptr, std::size_t size) |
| { |
| destruct_elements_of_array<T>(ptr, size); |
| conditional_aligned_free<Align>(ptr); |
| } |
| |
| template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_realloc_new(T* pts, std::size_t new_size, std::size_t old_size) |
| { |
| check_size_for_overflow<T>(new_size); |
| check_size_for_overflow<T>(old_size); |
| if(new_size < old_size) |
| destruct_elements_of_array(pts+new_size, old_size-new_size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| if(new_size > old_size) |
| { |
| EIGEN_TRY |
| { |
| construct_elements_of_array(result+old_size, new_size-old_size); |
| } |
| EIGEN_CATCH(...) |
| { |
| conditional_aligned_free<Align>(result); |
| EIGEN_THROW; |
| } |
| } |
| return result; |
| } |
| |
| |
| template<typename T, bool Align> EIGEN_DEVICE_FUNC inline T* conditional_aligned_new_auto(std::size_t size) |
| { |
| if(size==0) |
| return 0; // short-cut. Also fixes Bug 884 |
| check_size_for_overflow<T>(size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_malloc<Align>(sizeof(T)*size)); |
| if(NumTraits<T>::RequireInitialization) |
| { |
| EIGEN_TRY |
| { |
| construct_elements_of_array(result, size); |
| } |
| EIGEN_CATCH(...) |
| { |
| conditional_aligned_free<Align>(result); |
| EIGEN_THROW; |
| } |
| } |
| return result; |
| } |
| |
| template<typename T, bool Align> inline T* conditional_aligned_realloc_new_auto(T* pts, std::size_t new_size, std::size_t old_size) |
| { |
| check_size_for_overflow<T>(new_size); |
| check_size_for_overflow<T>(old_size); |
| if(NumTraits<T>::RequireInitialization && (new_size < old_size)) |
| destruct_elements_of_array(pts+new_size, old_size-new_size); |
| T *result = reinterpret_cast<T*>(conditional_aligned_realloc<Align>(reinterpret_cast<void*>(pts), sizeof(T)*new_size, sizeof(T)*old_size)); |
| if(NumTraits<T>::RequireInitialization && (new_size > old_size)) |
| { |
| EIGEN_TRY |
| { |
| construct_elements_of_array(result+old_size, new_size-old_size); |
| } |
| EIGEN_CATCH(...) |
| { |
| conditional_aligned_free<Align>(result); |
| EIGEN_THROW; |
| } |
| } |
| return result; |
| } |
| |
| template<typename T, bool Align> EIGEN_DEVICE_FUNC inline void conditional_aligned_delete_auto(T *ptr, std::size_t size) |
| { |
| if(NumTraits<T>::RequireInitialization) |
| destruct_elements_of_array<T>(ptr, size); |
| conditional_aligned_free<Align>(ptr); |
| } |
| |
| /****************************************************************************/ |
| |
| /** \internal Returns the index of the first element of the array that is well aligned with respect to the requested \a Alignment. |
| * |
| * \tparam Alignment requested alignment in Bytes. |
| * \param array the address of the start of the array |
| * \param size the size of the array |
| * |
| * \note If no element of the array is well aligned or the requested alignment is not a multiple of a scalar, |
| * the size of the array is returned. For example with SSE, the requested alignment is typically 16-bytes. If |
| * packet size for the given scalar type is 1, then everything is considered well-aligned. |
| * |
| * \note Otherwise, if the Alignment is larger that the scalar size, we rely on the assumptions that sizeof(Scalar) is a |
| * power of 2. On the other hand, we do not assume that the array address is a multiple of sizeof(Scalar), as that fails for |
| * example with Scalar=double on certain 32-bit platforms, see bug #79. |
| * |
| * There is also the variant first_aligned(const MatrixBase&) defined in DenseCoeffsBase.h. |
| * \sa first_default_aligned() |
| */ |
| template<int Alignment, typename Scalar, typename Index> |
| EIGEN_DEVICE_FUNC inline Index first_aligned(const Scalar* array, Index size) |
| { |
| const Index ScalarSize = sizeof(Scalar); |
| const Index AlignmentSize = Alignment / ScalarSize; |
| const Index AlignmentMask = AlignmentSize-1; |
| |
| if(AlignmentSize<=1) |
| { |
| // Either the requested alignment if smaller than a scalar, or it exactly match a 1 scalar |
| // so that all elements of the array have the same alignment. |
| return 0; |
| } |
| else if( (UIntPtr(array) & (sizeof(Scalar)-1)) || (Alignment%ScalarSize)!=0) |
| { |
| // The array is not aligned to the size of a single scalar, or the requested alignment is not a multiple of the scalar size. |
| // Consequently, no element of the array is well aligned. |
| return size; |
| } |
| else |
| { |
| Index first = (AlignmentSize - (Index((UIntPtr(array)/sizeof(Scalar))) & AlignmentMask)) & AlignmentMask; |
| return (first < size) ? first : size; |
| } |
| } |
| |
| /** \internal Returns the index of the first element of the array that is well aligned with respect the largest packet requirement. |
| * \sa first_aligned(Scalar*,Index) and first_default_aligned(DenseBase<Derived>) */ |
| template<typename Scalar, typename Index> |
| EIGEN_DEVICE_FUNC inline Index first_default_aligned(const Scalar* array, Index size) |
| { |
| typedef typename packet_traits<Scalar>::type DefaultPacketType; |
| return first_aligned<unpacket_traits<DefaultPacketType>::alignment>(array, size); |
| } |
| |
| /** \internal Returns the smallest integer multiple of \a base and greater or equal to \a size |
| */ |
| template<typename Index> |
| inline Index first_multiple(Index size, Index base) |
| { |
| return ((size+base-1)/base)*base; |
| } |
| |
| // std::copy is much slower than memcpy, so let's introduce a smart_copy which |
| // use memcpy on trivial types, i.e., on types that does not require an initialization ctor. |
| template<typename T, bool UseMemcpy> struct smart_copy_helper; |
| |
| template<typename T> EIGEN_DEVICE_FUNC void smart_copy(const T* start, const T* end, T* target) |
| { |
| smart_copy_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
| } |
| |
| template<typename T> struct smart_copy_helper<T,true> { |
| EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
| { |
| IntPtr size = IntPtr(end)-IntPtr(start); |
| if(size==0) return; |
| eigen_internal_assert(start!=0 && end!=0 && target!=0); |
| EIGEN_USING_STD(memcpy) |
| memcpy(target, start, size); |
| } |
| }; |
| |
| template<typename T> struct smart_copy_helper<T,false> { |
| EIGEN_DEVICE_FUNC static inline void run(const T* start, const T* end, T* target) |
| { std::copy(start, end, target); } |
| }; |
| |
| // intelligent memmove. falls back to std::memmove for POD types, uses std::copy otherwise. |
| template<typename T, bool UseMemmove> struct smart_memmove_helper; |
| |
| template<typename T> void smart_memmove(const T* start, const T* end, T* target) |
| { |
| smart_memmove_helper<T,!NumTraits<T>::RequireInitialization>::run(start, end, target); |
| } |
| |
| template<typename T> struct smart_memmove_helper<T,true> { |
| static inline void run(const T* start, const T* end, T* target) |
| { |
| IntPtr size = IntPtr(end)-IntPtr(start); |
| if(size==0) return; |
| eigen_internal_assert(start!=0 && end!=0 && target!=0); |
| std::memmove(target, start, size); |
| } |
| }; |
| |
| template<typename T> struct smart_memmove_helper<T,false> { |
| static inline void run(const T* start, const T* end, T* target) |
| { |
| if (UIntPtr(target) < UIntPtr(start)) |
| { |
| std::copy(start, end, target); |
| } |
| else |
| { |
| std::ptrdiff_t count = (std::ptrdiff_t(end)-std::ptrdiff_t(start)) / sizeof(T); |
| std::copy_backward(start, end, target + count); |
| } |
| } |
| }; |
| |
| |
| /***************************************************************************** |
| *** Implementation of runtime stack allocation (falling back to malloc) *** |
| *****************************************************************************/ |
| |
| // you can overwrite Eigen's default behavior regarding alloca by defining EIGEN_ALLOCA |
| // to the appropriate stack allocation function |
| #if ! defined EIGEN_ALLOCA && ! defined EIGEN_GPU_COMPILE_PHASE |
| #if EIGEN_OS_LINUX || EIGEN_OS_MAC || (defined alloca) |
| #define EIGEN_ALLOCA alloca |
| #elif EIGEN_COMP_MSVC |
| #define EIGEN_ALLOCA _alloca |
| #endif |
| #endif |
| |
| // With clang -Oz -mthumb, alloca changes the stack pointer in a way that is |
| // not allowed in Thumb2. -DEIGEN_STACK_ALLOCATION_LIMIT=0 doesn't work because |
| // the compiler still emits bad code because stack allocation checks use "<=". |
| // TODO: Eliminate after https://bugs.llvm.org/show_bug.cgi?id=23772 |
| // is fixed. |
| #if defined(__clang__) && defined(__thumb__) |
| #undef EIGEN_ALLOCA |
| #endif |
| |
| // This helper class construct the allocated memory, and takes care of destructing and freeing the handled data |
| // at destruction time. In practice this helper class is mainly useful to avoid memory leak in case of exceptions. |
| template<typename T> class aligned_stack_memory_handler : noncopyable |
| { |
| public: |
| /* Creates a stack_memory_handler responsible for the buffer \a ptr of size \a size. |
| * Note that \a ptr can be 0 regardless of the other parameters. |
| * This constructor takes care of constructing/initializing the elements of the buffer if required by the scalar type T (see NumTraits<T>::RequireInitialization). |
| * In this case, the buffer elements will also be destructed when this handler will be destructed. |
| * Finally, if \a dealloc is true, then the pointer \a ptr is freed. |
| **/ |
| EIGEN_DEVICE_FUNC |
| aligned_stack_memory_handler(T* ptr, std::size_t size, bool dealloc) |
| : m_ptr(ptr), m_size(size), m_deallocate(dealloc) |
| { |
| if(NumTraits<T>::RequireInitialization && m_ptr) |
| Eigen::internal::construct_elements_of_array(m_ptr, size); |
| } |
| EIGEN_DEVICE_FUNC |
| ~aligned_stack_memory_handler() |
| { |
| if(NumTraits<T>::RequireInitialization && m_ptr) |
| Eigen::internal::destruct_elements_of_array<T>(m_ptr, m_size); |
| if(m_deallocate) |
| Eigen::internal::aligned_free(m_ptr); |
| } |
| protected: |
| T* m_ptr; |
| std::size_t m_size; |
| bool m_deallocate; |
| }; |
| |
| #ifdef EIGEN_ALLOCA |
| |
| template<typename Xpr, int NbEvaluations, |
| bool MapExternalBuffer = nested_eval<Xpr,NbEvaluations>::Evaluate && Xpr::MaxSizeAtCompileTime==Dynamic |
| > |
| struct local_nested_eval_wrapper |
| { |
| static const bool NeedExternalBuffer = false; |
| typedef typename Xpr::Scalar Scalar; |
| typedef typename nested_eval<Xpr,NbEvaluations>::type ObjectType; |
| ObjectType object; |
| |
| EIGEN_DEVICE_FUNC |
| local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) : object(xpr) |
| { |
| EIGEN_UNUSED_VARIABLE(ptr); |
| eigen_internal_assert(ptr==0); |
| } |
| }; |
| |
| template<typename Xpr, int NbEvaluations> |
| struct local_nested_eval_wrapper<Xpr,NbEvaluations,true> |
| { |
| static const bool NeedExternalBuffer = true; |
| typedef typename Xpr::Scalar Scalar; |
| typedef typename plain_object_eval<Xpr>::type PlainObject; |
| typedef Map<PlainObject,EIGEN_DEFAULT_ALIGN_BYTES> ObjectType; |
| ObjectType object; |
| |
| EIGEN_DEVICE_FUNC |
| local_nested_eval_wrapper(const Xpr& xpr, Scalar* ptr) |
| : object(ptr==0 ? reinterpret_cast<Scalar*>(Eigen::internal::aligned_malloc(sizeof(Scalar)*xpr.size())) : ptr, xpr.rows(), xpr.cols()), |
| m_deallocate(ptr==0) |
| { |
| if(NumTraits<Scalar>::RequireInitialization && object.data()) |
| Eigen::internal::construct_elements_of_array(object.data(), object.size()); |
| object = xpr; |
| } |
| |
| EIGEN_DEVICE_FUNC |
| ~local_nested_eval_wrapper() |
| { |
| if(NumTraits<Scalar>::RequireInitialization && object.data()) |
| Eigen::internal::destruct_elements_of_array(object.data(), object.size()); |
| if(m_deallocate) |
| Eigen::internal::aligned_free(object.data()); |
| } |
| |
| private: |
| bool m_deallocate; |
| }; |
| |
| #endif // EIGEN_ALLOCA |
| |
| template<typename T> class scoped_array : noncopyable |
| { |
| T* m_ptr; |
| public: |
| explicit scoped_array(std::ptrdiff_t size) |
| { |
| m_ptr = new T[size]; |
| } |
| ~scoped_array() |
| { |
| delete[] m_ptr; |
| } |
| T& operator[](std::ptrdiff_t i) { return m_ptr[i]; } |
| const T& operator[](std::ptrdiff_t i) const { return m_ptr[i]; } |
| T* &ptr() { return m_ptr; } |
| const T* ptr() const { return m_ptr; } |
| operator const T*() const { return m_ptr; } |
| }; |
| |
| template<typename T> void swap(scoped_array<T> &a,scoped_array<T> &b) |
| { |
| std::swap(a.ptr(),b.ptr()); |
| } |
| |
| } // end namespace internal |
| |
| /** \internal |
| * |
| * The macro ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) declares, allocates, |
| * and construct an aligned buffer named NAME of SIZE elements of type TYPE on the stack |
| * if the size in bytes is smaller than EIGEN_STACK_ALLOCATION_LIMIT, and if stack allocation is supported by the platform |
| * (currently, this is Linux, OSX and Visual Studio only). Otherwise the memory is allocated on the heap. |
| * The allocated buffer is automatically deleted when exiting the scope of this declaration. |
| * If BUFFER is non null, then the declared variable is simply an alias for BUFFER, and no allocation/deletion occurs. |
| * Here is an example: |
| * \code |
| * { |
| * ei_declare_aligned_stack_constructed_variable(float,data,size,0); |
| * // use data[0] to data[size-1] |
| * } |
| * \endcode |
| * The underlying stack allocation function can controlled with the EIGEN_ALLOCA preprocessor token. |
| * |
| * The macro ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) is analogue to |
| * \code |
| * typename internal::nested_eval<XPRT_T,N>::type NAME(XPR); |
| * \endcode |
| * with the advantage of using aligned stack allocation even if the maximal size of XPR at compile time is unknown. |
| * This is accomplished through alloca if this later is supported and if the required number of bytes |
| * is below EIGEN_STACK_ALLOCATION_LIMIT. |
| */ |
| #ifdef EIGEN_ALLOCA |
| |
| #if EIGEN_DEFAULT_ALIGN_BYTES>0 |
| // We always manually re-align the result of EIGEN_ALLOCA. |
| // If alloca is already aligned, the compiler should be smart enough to optimize away the re-alignment. |
| #define EIGEN_ALIGNED_ALLOCA(SIZE) reinterpret_cast<void*>((internal::UIntPtr(EIGEN_ALLOCA(SIZE+EIGEN_DEFAULT_ALIGN_BYTES-1)) + EIGEN_DEFAULT_ALIGN_BYTES-1) & ~(std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1))) |
| #else |
| #define EIGEN_ALIGNED_ALLOCA(SIZE) EIGEN_ALLOCA(SIZE) |
| #endif |
| |
| #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| TYPE* NAME = (BUFFER)!=0 ? (BUFFER) \ |
| : reinterpret_cast<TYPE*>( \ |
| (sizeof(TYPE)*SIZE<=EIGEN_STACK_ALLOCATION_LIMIT) ? EIGEN_ALIGNED_ALLOCA(sizeof(TYPE)*SIZE) \ |
| : Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE) ); \ |
| Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,sizeof(TYPE)*SIZE>EIGEN_STACK_ALLOCATION_LIMIT) |
| |
| |
| #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) \ |
| Eigen::internal::local_nested_eval_wrapper<XPR_T,N> EIGEN_CAT(NAME,_wrapper)(XPR, reinterpret_cast<typename XPR_T::Scalar*>( \ |
| ( (Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::NeedExternalBuffer) && ((sizeof(typename XPR_T::Scalar)*XPR.size())<=EIGEN_STACK_ALLOCATION_LIMIT) ) \ |
| ? EIGEN_ALIGNED_ALLOCA( sizeof(typename XPR_T::Scalar)*XPR.size() ) : 0 ) ) ; \ |
| typename Eigen::internal::local_nested_eval_wrapper<XPR_T,N>::ObjectType NAME(EIGEN_CAT(NAME,_wrapper).object) |
| |
| #else |
| |
| #define ei_declare_aligned_stack_constructed_variable(TYPE,NAME,SIZE,BUFFER) \ |
| Eigen::internal::check_size_for_overflow<TYPE>(SIZE); \ |
| TYPE* NAME = (BUFFER)!=0 ? BUFFER : reinterpret_cast<TYPE*>(Eigen::internal::aligned_malloc(sizeof(TYPE)*SIZE)); \ |
| Eigen::internal::aligned_stack_memory_handler<TYPE> EIGEN_CAT(NAME,_stack_memory_destructor)((BUFFER)==0 ? NAME : 0,SIZE,true) |
| |
| |
| #define ei_declare_local_nested_eval(XPR_T,XPR,N,NAME) typename Eigen::internal::nested_eval<XPR_T,N>::type NAME(XPR) |
| |
| #endif |
| |
| |
| /***************************************************************************** |
| *** Implementation of EIGEN_MAKE_ALIGNED_OPERATOR_NEW [_IF] *** |
| *****************************************************************************/ |
| |
| #if EIGEN_HAS_CXX17_OVERALIGN |
| |
| // C++17 -> no need to bother about alignment anymore :) |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) |
| |
| #else |
| |
| #if EIGEN_MAX_ALIGN_BYTES!=0 |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void* operator new(std::size_t size, const std::nothrow_t&) EIGEN_NO_THROW { \ |
| EIGEN_TRY { return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); } \ |
| EIGEN_CATCH (...) { return 0; } \ |
| } |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) \ |
| void *operator new(std::size_t size) { \ |
| return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void *operator new[](std::size_t size) { \ |
| return Eigen::internal::conditional_aligned_malloc<NeedsToAlign>(size); \ |
| } \ |
| void operator delete(void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| void operator delete[](void * ptr) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| void operator delete(void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| void operator delete[](void * ptr, std::size_t /* sz */) EIGEN_NO_THROW { Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); } \ |
| /* in-place new and delete. since (at least afaik) there is no actual */ \ |
| /* memory allocated we can safely let the default implementation handle */ \ |
| /* this particular case. */ \ |
| static void *operator new(std::size_t size, void *ptr) { return ::operator new(size,ptr); } \ |
| static void *operator new[](std::size_t size, void* ptr) { return ::operator new[](size,ptr); } \ |
| void operator delete(void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete(memory,ptr); } \ |
| void operator delete[](void * memory, void *ptr) EIGEN_NO_THROW { return ::operator delete[](memory,ptr); } \ |
| /* nothrow-new (returns zero instead of std::bad_alloc) */ \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_NOTHROW(NeedsToAlign) \ |
| void operator delete(void *ptr, const std::nothrow_t&) EIGEN_NO_THROW { \ |
| Eigen::internal::conditional_aligned_free<NeedsToAlign>(ptr); \ |
| } \ |
| typedef void eigen_aligned_operator_new_marker_type; |
| #else |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) |
| #endif |
| |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(true) |
| #define EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar,Size) \ |
| EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool( \ |
| ((Size)!=Eigen::Dynamic) && \ |
| (((EIGEN_MAX_ALIGN_BYTES>=16) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES )==0)) || \ |
| ((EIGEN_MAX_ALIGN_BYTES>=32) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/2)==0)) || \ |
| ((EIGEN_MAX_ALIGN_BYTES>=64) && ((sizeof(Scalar)*(Size))%(EIGEN_MAX_ALIGN_BYTES/4)==0)) ))) |
| |
| #endif |
| |
| /****************************************************************************/ |
| |
| /** \class aligned_allocator |
| * \ingroup Core_Module |
| * |
| * \brief STL compatible allocator to use with types requiring a non standrad alignment. |
| * |
| * The memory is aligned as for dynamically aligned matrix/array types such as MatrixXd. |
| * By default, it will thus provide at least 16 bytes alignment and more in following cases: |
| * - 32 bytes alignment if AVX is enabled. |
| * - 64 bytes alignment if AVX512 is enabled. |
| * |
| * This can be controlled using the \c EIGEN_MAX_ALIGN_BYTES macro as documented |
| * \link TopicPreprocessorDirectivesPerformance there \endlink. |
| * |
| * Example: |
| * \code |
| * // Matrix4f requires 16 bytes alignment: |
| * std::map< int, Matrix4f, std::less<int>, |
| * aligned_allocator<std::pair<const int, Matrix4f> > > my_map_mat4; |
| * // Vector3f does not require 16 bytes alignment, no need to use Eigen's allocator: |
| * std::map< int, Vector3f > my_map_vec3; |
| * \endcode |
| * |
| * \sa \blank \ref TopicStlContainers. |
| */ |
| template<class T> |
| class aligned_allocator : public std::allocator<T> |
| { |
| public: |
| typedef std::size_t size_type; |
| typedef std::ptrdiff_t difference_type; |
| typedef T* pointer; |
| typedef const T* const_pointer; |
| typedef T& reference; |
| typedef const T& const_reference; |
| typedef T value_type; |
| |
| template<class U> |
| struct rebind |
| { |
| typedef aligned_allocator<U> other; |
| }; |
| |
| aligned_allocator() : std::allocator<T>() {} |
| |
| aligned_allocator(const aligned_allocator& other) : std::allocator<T>(other) {} |
| |
| template<class U> |
| aligned_allocator(const aligned_allocator<U>& other) : std::allocator<T>(other) {} |
| |
| ~aligned_allocator() {} |
| |
| #if EIGEN_COMP_GNUC_STRICT && EIGEN_GNUC_AT_LEAST(7,0) |
| // In gcc std::allocator::max_size() is bugged making gcc triggers a warning: |
| // eigen/Eigen/src/Core/util/Memory.h:189:12: warning: argument 1 value '18446744073709551612' exceeds maximum object size 9223372036854775807 |
| // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87544 |
| size_type max_size() const { |
| return (std::numeric_limits<std::ptrdiff_t>::max)()/sizeof(T); |
| } |
| #endif |
| |
| pointer allocate(size_type num, const void* /*hint*/ = 0) |
| { |
| internal::check_size_for_overflow<T>(num); |
| return static_cast<pointer>( internal::aligned_malloc(num * sizeof(T)) ); |
| } |
| |
| void deallocate(pointer p, size_type /*num*/) |
| { |
| internal::aligned_free(p); |
| } |
| }; |
| |
| //---------- Cache sizes ---------- |
| |
| #if !defined(EIGEN_NO_CPUID) |
| # if EIGEN_COMP_GNUC && EIGEN_ARCH_i386_OR_x86_64 |
| # if defined(__PIC__) && EIGEN_ARCH_i386 |
| // Case for x86 with PIC |
| # define EIGEN_CPUID(abcd,func,id) \ |
| __asm__ __volatile__ ("xchgl %%ebx, %k1;cpuid; xchgl %%ebx,%k1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "a" (func), "c" (id)); |
| # elif defined(__PIC__) && EIGEN_ARCH_x86_64 |
| // Case for x64 with PIC. In theory this is only a problem with recent gcc and with medium or large code model, not with the default small code model. |
| // However, we cannot detect which code model is used, and the xchg overhead is negligible anyway. |
| # define EIGEN_CPUID(abcd,func,id) \ |
| __asm__ __volatile__ ("xchg{q}\t{%%}rbx, %q1; cpuid; xchg{q}\t{%%}rbx, %q1": "=a" (abcd[0]), "=&r" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id)); |
| # else |
| // Case for x86_64 or x86 w/o PIC |
| # define EIGEN_CPUID(abcd,func,id) \ |
| __asm__ __volatile__ ("cpuid": "=a" (abcd[0]), "=b" (abcd[1]), "=c" (abcd[2]), "=d" (abcd[3]) : "0" (func), "2" (id) ); |
| # endif |
| # elif EIGEN_COMP_MSVC |
| # if (EIGEN_COMP_MSVC > 1500) && EIGEN_ARCH_i386_OR_x86_64 |
| # define EIGEN_CPUID(abcd,func,id) __cpuidex((int*)abcd,func,id) |
| # endif |
| # endif |
| #endif |
| |
| namespace internal { |
| |
| #ifdef EIGEN_CPUID |
| |
| inline bool cpuid_is_vendor(int abcd[4], const int vendor[3]) |
| { |
| return abcd[1]==vendor[0] && abcd[3]==vendor[1] && abcd[2]==vendor[2]; |
| } |
| |
| inline void queryCacheSizes_intel_direct(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| l1 = l2 = l3 = 0; |
| int cache_id = 0; |
| int cache_type = 0; |
| do { |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x4,cache_id); |
| cache_type = (abcd[0] & 0x0F) >> 0; |
| if(cache_type==1||cache_type==3) // data or unified cache |
| { |
| int cache_level = (abcd[0] & 0xE0) >> 5; // A[7:5] |
| int ways = (abcd[1] & 0xFFC00000) >> 22; // B[31:22] |
| int partitions = (abcd[1] & 0x003FF000) >> 12; // B[21:12] |
| int line_size = (abcd[1] & 0x00000FFF) >> 0; // B[11:0] |
| int sets = (abcd[2]); // C[31:0] |
| |
| int cache_size = (ways+1) * (partitions+1) * (line_size+1) * (sets+1); |
| |
| switch(cache_level) |
| { |
| case 1: l1 = cache_size; break; |
| case 2: l2 = cache_size; break; |
| case 3: l3 = cache_size; break; |
| default: break; |
| } |
| } |
| cache_id++; |
| } while(cache_type>0 && cache_id<16); |
| } |
| |
| inline void queryCacheSizes_intel_codes(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| l1 = l2 = l3 = 0; |
| EIGEN_CPUID(abcd,0x00000002,0); |
| unsigned char * bytes = reinterpret_cast<unsigned char *>(abcd)+2; |
| bool check_for_p2_core2 = false; |
| for(int i=0; i<14; ++i) |
| { |
| switch(bytes[i]) |
| { |
| case 0x0A: l1 = 8; break; // 0Ah data L1 cache, 8 KB, 2 ways, 32 byte lines |
| case 0x0C: l1 = 16; break; // 0Ch data L1 cache, 16 KB, 4 ways, 32 byte lines |
| case 0x0E: l1 = 24; break; // 0Eh data L1 cache, 24 KB, 6 ways, 64 byte lines |
| case 0x10: l1 = 16; break; // 10h data L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| case 0x15: l1 = 16; break; // 15h code L1 cache, 16 KB, 4 ways, 32 byte lines (IA-64) |
| case 0x2C: l1 = 32; break; // 2Ch data L1 cache, 32 KB, 8 ways, 64 byte lines |
| case 0x30: l1 = 32; break; // 30h code L1 cache, 32 KB, 8 ways, 64 byte lines |
| case 0x60: l1 = 16; break; // 60h data L1 cache, 16 KB, 8 ways, 64 byte lines, sectored |
| case 0x66: l1 = 8; break; // 66h data L1 cache, 8 KB, 4 ways, 64 byte lines, sectored |
| case 0x67: l1 = 16; break; // 67h data L1 cache, 16 KB, 4 ways, 64 byte lines, sectored |
| case 0x68: l1 = 32; break; // 68h data L1 cache, 32 KB, 4 ways, 64 byte lines, sectored |
| case 0x1A: l2 = 96; break; // code and data L2 cache, 96 KB, 6 ways, 64 byte lines (IA-64) |
| case 0x22: l3 = 512; break; // code and data L3 cache, 512 KB, 4 ways (!), 64 byte lines, dual-sectored |
| case 0x23: l3 = 1024; break; // code and data L3 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x25: l3 = 2048; break; // code and data L3 cache, 2048 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x29: l3 = 4096; break; // code and data L3 cache, 4096 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x39: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 64 byte lines, sectored |
| case 0x3A: l2 = 192; break; // code and data L2 cache, 192 KB, 6 ways, 64 byte lines, sectored |
| case 0x3B: l2 = 128; break; // code and data L2 cache, 128 KB, 2 ways, 64 byte lines, sectored |
| case 0x3C: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 64 byte lines, sectored |
| case 0x3D: l2 = 384; break; // code and data L2 cache, 384 KB, 6 ways, 64 byte lines, sectored |
| case 0x3E: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines, sectored |
| case 0x40: l2 = 0; break; // no integrated L2 cache (P6 core) or L3 cache (P4 core) |
| case 0x41: l2 = 128; break; // code and data L2 cache, 128 KB, 4 ways, 32 byte lines |
| case 0x42: l2 = 256; break; // code and data L2 cache, 256 KB, 4 ways, 32 byte lines |
| case 0x43: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 32 byte lines |
| case 0x44: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 32 byte lines |
| case 0x45: l2 = 2048; break; // code and data L2 cache, 2048 KB, 4 ways, 32 byte lines |
| case 0x46: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines |
| case 0x47: l3 = 8192; break; // code and data L3 cache, 8192 KB, 8 ways, 64 byte lines |
| case 0x48: l2 = 3072; break; // code and data L2 cache, 3072 KB, 12 ways, 64 byte lines |
| case 0x49: if(l2!=0) l3 = 4096; else {check_for_p2_core2=true; l3 = l2 = 4096;} break;// code and data L3 cache, 4096 KB, 16 ways, 64 byte lines (P4) or L2 for core2 |
| case 0x4A: l3 = 6144; break; // code and data L3 cache, 6144 KB, 12 ways, 64 byte lines |
| case 0x4B: l3 = 8192; break; // code and data L3 cache, 8192 KB, 16 ways, 64 byte lines |
| case 0x4C: l3 = 12288; break; // code and data L3 cache, 12288 KB, 12 ways, 64 byte lines |
| case 0x4D: l3 = 16384; break; // code and data L3 cache, 16384 KB, 16 ways, 64 byte lines |
| case 0x4E: l2 = 6144; break; // code and data L2 cache, 6144 KB, 24 ways, 64 byte lines |
| case 0x78: l2 = 1024; break; // code and data L2 cache, 1024 KB, 4 ways, 64 byte lines |
| case 0x79: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7A: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7B: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7C: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines, dual-sectored |
| case 0x7D: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 64 byte lines |
| case 0x7E: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 128 byte lines, sect. (IA-64) |
| case 0x7F: l2 = 512; break; // code and data L2 cache, 512 KB, 2 ways, 64 byte lines |
| case 0x80: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 64 byte lines |
| case 0x81: l2 = 128; break; // code and data L2 cache, 128 KB, 8 ways, 32 byte lines |
| case 0x82: l2 = 256; break; // code and data L2 cache, 256 KB, 8 ways, 32 byte lines |
| case 0x83: l2 = 512; break; // code and data L2 cache, 512 KB, 8 ways, 32 byte lines |
| case 0x84: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 32 byte lines |
| case 0x85: l2 = 2048; break; // code and data L2 cache, 2048 KB, 8 ways, 32 byte lines |
| case 0x86: l2 = 512; break; // code and data L2 cache, 512 KB, 4 ways, 64 byte lines |
| case 0x87: l2 = 1024; break; // code and data L2 cache, 1024 KB, 8 ways, 64 byte lines |
| case 0x88: l3 = 2048; break; // code and data L3 cache, 2048 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x89: l3 = 4096; break; // code and data L3 cache, 4096 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x8A: l3 = 8192; break; // code and data L3 cache, 8192 KB, 4 ways, 64 byte lines (IA-64) |
| case 0x8D: l3 = 3072; break; // code and data L3 cache, 3072 KB, 12 ways, 128 byte lines (IA-64) |
| |
| default: break; |
| } |
| } |
| if(check_for_p2_core2 && l2 == l3) |
| l3 = 0; |
| l1 *= 1024; |
| l2 *= 1024; |
| l3 *= 1024; |
| } |
| |
| inline void queryCacheSizes_intel(int& l1, int& l2, int& l3, int max_std_funcs) |
| { |
| if(max_std_funcs>=4) |
| queryCacheSizes_intel_direct(l1,l2,l3); |
| else |
| queryCacheSizes_intel_codes(l1,l2,l3); |
| } |
| |
| inline void queryCacheSizes_amd(int& l1, int& l2, int& l3) |
| { |
| int abcd[4]; |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x80000005,0); |
| l1 = (abcd[2] >> 24) * 1024; // C[31:24] = L1 size in KB |
| abcd[0] = abcd[1] = abcd[2] = abcd[3] = 0; |
| EIGEN_CPUID(abcd,0x80000006,0); |
| l2 = (abcd[2] >> 16) * 1024; // C[31;16] = l2 cache size in KB |
| l3 = ((abcd[3] & 0xFFFC000) >> 18) * 512 * 1024; // D[31;18] = l3 cache size in 512KB |
| } |
| #endif |
| |
| /** \internal |
| * Queries and returns the cache sizes in Bytes of the L1, L2, and L3 data caches respectively */ |
| inline void queryCacheSizes(int& l1, int& l2, int& l3) |
| { |
| #ifdef EIGEN_CPUID |
| int abcd[4]; |
| const int GenuineIntel[] = {0x756e6547, 0x49656e69, 0x6c65746e}; |
| const int AuthenticAMD[] = {0x68747541, 0x69746e65, 0x444d4163}; |
| const int AMDisbetter_[] = {0x69444d41, 0x74656273, 0x21726574}; // "AMDisbetter!" |
| |
| // identify the CPU vendor |
| EIGEN_CPUID(abcd,0x0,0); |
| int max_std_funcs = abcd[1]; |
| if(cpuid_is_vendor(abcd,GenuineIntel)) |
| queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| else if(cpuid_is_vendor(abcd,AuthenticAMD) || cpuid_is_vendor(abcd,AMDisbetter_)) |
| queryCacheSizes_amd(l1,l2,l3); |
| else |
| // by default let's use Intel's API |
| queryCacheSizes_intel(l1,l2,l3,max_std_funcs); |
| |
| // here is the list of other vendors: |
| // ||cpuid_is_vendor(abcd,"VIA VIA VIA ") |
| // ||cpuid_is_vendor(abcd,"CyrixInstead") |
| // ||cpuid_is_vendor(abcd,"CentaurHauls") |
| // ||cpuid_is_vendor(abcd,"GenuineTMx86") |
| // ||cpuid_is_vendor(abcd,"TransmetaCPU") |
| // ||cpuid_is_vendor(abcd,"RiseRiseRise") |
| // ||cpuid_is_vendor(abcd,"Geode by NSC") |
| // ||cpuid_is_vendor(abcd,"SiS SiS SiS ") |
| // ||cpuid_is_vendor(abcd,"UMC UMC UMC ") |
| // ||cpuid_is_vendor(abcd,"NexGenDriven") |
| #else |
| l1 = l2 = l3 = -1; |
| #endif |
| } |
| |
| /** \internal |
| * \returns the size in Bytes of the L1 data cache */ |
| inline int queryL1CacheSize() |
| { |
| int l1(-1), l2, l3; |
| queryCacheSizes(l1,l2,l3); |
| return l1; |
| } |
| |
| /** \internal |
| * \returns the size in Bytes of the L2 or L3 cache if this later is present */ |
| inline int queryTopLevelCacheSize() |
| { |
| int l1, l2(-1), l3(-1); |
| queryCacheSizes(l1,l2,l3); |
| return (std::max)(l2,l3); |
| } |
| |
| } // end namespace internal |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_MEMORY_H |