blob: 5cd6f1bb1efd19313a67f2cbbd8333cfdde815af [file] [log] [blame]
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H
/** \ingroup cholesky_Module
*
* \class LDLT
*
* \brief Robust Cholesky decomposition of a matrix
*
* \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
*
* Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
* matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L
* is lower triangular with a unit diagonal and D is a diagonal matrix.
*
* The decomposition uses pivoting to ensure stability, so that L will have
* zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
* on D also stabilizes the computation.
*
* Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky decomposition to determine
* whether a system of equations has a solution.
*
* \sa MatrixBase::ldlt(), class LLT
*/
/* THIS PART OF THE DOX IS CURRENTLY DISABLED BECAUSE INACCURATE BECAUSE OF BUG IN THE DECOMPOSITION CODE
* Note that during the decomposition, only the upper triangular part of A is considered. Therefore,
* the strict lower part does not have to store correct values.
*/
template<typename MatrixType> class LDLT
{
public:
typedef typename MatrixType::Scalar Scalar;
typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
typedef Matrix<int, 1, MatrixType::RowsAtCompileTime> IntRowVectorType;
LDLT(const MatrixType& matrix)
: m_matrix(matrix.rows(), matrix.cols()),
m_p(matrix.rows()),
m_transpositions(matrix.rows())
{
compute(matrix);
}
/** \returns the lower triangular matrix L */
inline Part<MatrixType, UnitLowerTriangular> matrixL(void) const { return m_matrix; }
/** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
* representing the P permutation i.e. the permutation of the rows. For its precise meaning,
* see the examples given in the documentation of class LU.
*/
inline const IntColVectorType& permutationP() const
{
return m_p;
}
/** \returns the coefficients of the diagonal matrix D */
inline Diagonal<MatrixType,0> vectorD(void) const { return m_matrix.diagonal(); }
/** \returns true if the matrix is positive (semidefinite) */
inline bool isPositive(void) const { return m_sign == 1; }
/** \returns true if the matrix is negative (semidefinite) */
inline bool isNegative(void) const { return m_sign == -1; }
template<typename RhsDerived, typename ResDerived>
bool solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const;
template<typename Derived>
bool solveInPlace(MatrixBase<Derived> &bAndX) const;
void compute(const MatrixType& matrix);
protected:
/** \internal
* Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
* The strict upper part is used during the decomposition, the strict lower
* part correspond to the coefficients of L (its diagonal is equal to 1 and
* is not stored), and the diagonal entries correspond to D.
*/
MatrixType m_matrix;
IntColVectorType m_p;
IntColVectorType m_transpositions;
int m_sign;
};
/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
*/
template<typename MatrixType>
void LDLT<MatrixType>::compute(const MatrixType& a)
{
ei_assert(a.rows()==a.cols());
const int size = a.rows();
m_matrix = a;
if (size <= 1) {
m_p.setZero();
m_transpositions.setZero();
m_sign = ei_real(a.coeff(0,0))>0 ? 1:-1;
return;
}
RealScalar cutoff = 0, biggest_in_corner;
// By using a temorary, packet-aligned products are guarenteed. In the LLT
// case this is unnecessary because the diagonal is included and will always
// have optimal alignment.
Matrix<Scalar,MatrixType::RowsAtCompileTime,1> _temporary(size);
for (int j = 0; j < size; ++j)
{
// Find largest diagonal element
int index_of_biggest_in_corner;
biggest_in_corner = m_matrix.diagonal().end(size-j).cwise().abs()
.maxCoeff(&index_of_biggest_in_corner);
index_of_biggest_in_corner += j;
if(j == 0)
{
// The biggest overall is the point of reference to which further diagonals
// are compared; if any diagonal is negligible compared
// to the largest overall, the algorithm bails. This cutoff is suggested
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 217, also by Higham.
cutoff = ei_abs(machine_epsilon<Scalar>() * size * biggest_in_corner);
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
// Finish early if the matrix is not full rank.
if(biggest_in_corner < cutoff)
{
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
break;
}
m_transpositions.coeffRef(j) = index_of_biggest_in_corner;
if(j != index_of_biggest_in_corner)
{
m_matrix.row(j).swap(m_matrix.row(index_of_biggest_in_corner));
m_matrix.col(j).swap(m_matrix.col(index_of_biggest_in_corner));
}
if (j == 0) {
m_matrix.row(0) = m_matrix.row(0).conjugate();
m_matrix.col(0).end(size-1) = m_matrix.row(0).end(size-1) / m_matrix.coeff(0,0);
continue;
}
RealScalar Djj = ei_real(m_matrix.coeff(j,j) - (m_matrix.row(j).start(j)
* m_matrix.col(j).start(j).conjugate()).coeff(0,0));
m_matrix.coeffRef(j,j) = Djj;
// Finish early if the matrix is not full rank.
if(ei_abs(Djj) < cutoff)
{
for(int i = j; i < size; i++) m_transpositions.coeffRef(i) = i;
break;
}
int endSize = size - j - 1;
if (endSize > 0) {
_temporary.end(endSize) = ( m_matrix.block(j+1,0, endSize, j)
* m_matrix.col(j).start(j).conjugate() ).lazy();
m_matrix.row(j).end(endSize) = m_matrix.row(j).end(endSize).conjugate()
- _temporary.end(endSize).transpose();
m_matrix.col(j).end(endSize) = m_matrix.row(j).end(endSize) / Djj;
}
}
// Reverse applied swaps to get P matrix.
for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
for(int k = size-1; k >= 0; --k) {
std::swap(m_p.coeffRef(k), m_p.coeffRef(m_transpositions.coeff(k)));
}
}
/** Computes the solution x of \f$ A x = b \f$ using the current decomposition of A.
* The result is stored in \a result
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* In other words, it computes \f$ b = A^{-1} b \f$ with
* \f$ P^T{L^{*}}^{-1} D^{-1} L^{-1} P b \f$ from right to left.
*
* \sa LDLT::solveInPlace(), MatrixBase::ldlt()
*/
template<typename MatrixType>
template<typename RhsDerived, typename ResDerived>
bool LDLT<MatrixType>
::solve(const MatrixBase<RhsDerived> &b, MatrixBase<ResDerived> *result) const
{
const int size = m_matrix.rows();
ei_assert(size==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
*result = b;
return solveInPlace(*result);
}
/** This is the \em in-place version of solve().
*
* \param bAndX represents both the right-hand side matrix b and result x.
*
* \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
*
* This version avoids a copy when the right hand side matrix b is not
* needed anymore.
*
* \sa LDLT::solve(), MatrixBase::ldlt()
*/
template<typename MatrixType>
template<typename Derived>
bool LDLT<MatrixType>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
const int size = m_matrix.rows();
ei_assert(size == bAndX.rows());
// z = P b
for(int i = 0; i < size; ++i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
// y = L^-1 z
matrixL().solveTriangularInPlace(bAndX);
// w = D^-1 y
bAndX = (m_matrix.diagonal().cwise().inverse().asDiagonal() * bAndX).lazy();
// u = L^-T w
m_matrix.adjoint().template part<UnitUpperTriangular>().solveTriangularInPlace(bAndX);
// x = P^T u
for (int i = size-1; i >= 0; --i) bAndX.row(m_transpositions.coeff(i)).swap(bAndX.row(i));
return true;
}
/** \cholesky_module
* \returns the Cholesky decomposition with full pivoting without square root of \c *this
*/
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainMatrixType>
MatrixBase<Derived>::ldlt() const
{
return derived();
}
#endif // EIGEN_LDLT_H