| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> |
| // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> |
| // |
| // This Source Code Form is subject to the terms of the Mozilla |
| // Public License v. 2.0. If a copy of the MPL was not distributed |
| // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. |
| |
| #ifndef EIGEN_REDUX_H |
| #define EIGEN_REDUX_H |
| |
| namespace Eigen { |
| |
| namespace internal { |
| |
| // TODO |
| // * implement other kind of vectorization |
| // * factorize code |
| |
| /*************************************************************************** |
| * Part 1 : the logic deciding a strategy for vectorization and unrolling |
| ***************************************************************************/ |
| |
| template<typename Func, typename Derived> |
| struct redux_traits |
| { |
| public: |
| enum { |
| PacketSize = packet_traits<typename Derived::Scalar>::size, |
| InnerMaxSize = int(Derived::IsRowMajor) |
| ? Derived::MaxColsAtCompileTime |
| : Derived::MaxRowsAtCompileTime |
| }; |
| |
| enum { |
| MightVectorize = (int(Derived::Flags)&ActualPacketAccessBit) |
| && (functor_traits<Func>::PacketAccess), |
| MayLinearVectorize = MightVectorize && (int(Derived::Flags)&LinearAccessBit), |
| MaySliceVectorize = MightVectorize && int(InnerMaxSize)>=3*PacketSize |
| }; |
| |
| public: |
| enum { |
| Traversal = int(MayLinearVectorize) ? int(LinearVectorizedTraversal) |
| : int(MaySliceVectorize) ? int(SliceVectorizedTraversal) |
| : int(DefaultTraversal) |
| }; |
| |
| public: |
| enum { |
| Cost = Derived::SizeAtCompileTime == Dynamic ? HugeCost |
| : Derived::SizeAtCompileTime * Derived::CoeffReadCost + (Derived::SizeAtCompileTime-1) * functor_traits<Func>::Cost, |
| UnrollingLimit = EIGEN_UNROLLING_LIMIT * (int(Traversal) == int(DefaultTraversal) ? 1 : int(PacketSize)) |
| }; |
| |
| public: |
| enum { |
| Unrolling = Cost <= UnrollingLimit ? CompleteUnrolling : NoUnrolling |
| }; |
| |
| #ifdef EIGEN_DEBUG_ASSIGN |
| static void debug() |
| { |
| std::cerr << "Xpr: " << typeid(typename Derived::XprType).name() << std::endl; |
| std::cerr.setf(std::ios::hex, std::ios::basefield); |
| EIGEN_DEBUG_VAR(Derived::Flags) |
| std::cerr.unsetf(std::ios::hex); |
| EIGEN_DEBUG_VAR(InnerMaxSize) |
| EIGEN_DEBUG_VAR(PacketSize) |
| EIGEN_DEBUG_VAR(MightVectorize) |
| EIGEN_DEBUG_VAR(MayLinearVectorize) |
| EIGEN_DEBUG_VAR(MaySliceVectorize) |
| EIGEN_DEBUG_VAR(Traversal) |
| EIGEN_DEBUG_VAR(UnrollingLimit) |
| EIGEN_DEBUG_VAR(Unrolling) |
| std::cerr << std::endl; |
| } |
| #endif |
| }; |
| |
| /*************************************************************************** |
| * Part 2 : unrollers |
| ***************************************************************************/ |
| |
| /*** no vectorization ***/ |
| |
| template<typename Func, typename Derived, int Start, int Length> |
| struct redux_novec_unroller |
| { |
| enum { |
| HalfLength = Length/2 |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC |
| static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| { |
| return func(redux_novec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| redux_novec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func)); |
| } |
| }; |
| |
| template<typename Func, typename Derived, int Start> |
| struct redux_novec_unroller<Func, Derived, Start, 1> |
| { |
| enum { |
| outer = Start / Derived::InnerSizeAtCompileTime, |
| inner = Start % Derived::InnerSizeAtCompileTime |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| |
| EIGEN_DEVICE_FUNC |
| static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func&) |
| { |
| return mat.coeffByOuterInner(outer, inner); |
| } |
| }; |
| |
| // This is actually dead code and will never be called. It is required |
| // to prevent false warnings regarding failed inlining though |
| // for 0 length run() will never be called at all. |
| template<typename Func, typename Derived, int Start> |
| struct redux_novec_unroller<Func, Derived, Start, 0> |
| { |
| typedef typename Derived::Scalar Scalar; |
| EIGEN_DEVICE_FUNC |
| static EIGEN_STRONG_INLINE Scalar run(const Derived&, const Func&) { return Scalar(); } |
| }; |
| |
| /*** vectorization ***/ |
| |
| template<typename Func, typename Derived, int Start, int Length> |
| struct redux_vec_unroller |
| { |
| enum { |
| PacketSize = packet_traits<typename Derived::Scalar>::size, |
| HalfLength = Length/2 |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| |
| static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func& func) |
| { |
| return func.packetOp( |
| redux_vec_unroller<Func, Derived, Start, HalfLength>::run(mat,func), |
| redux_vec_unroller<Func, Derived, Start+HalfLength, Length-HalfLength>::run(mat,func) ); |
| } |
| }; |
| |
| template<typename Func, typename Derived, int Start> |
| struct redux_vec_unroller<Func, Derived, Start, 1> |
| { |
| enum { |
| index = Start * packet_traits<typename Derived::Scalar>::size, |
| outer = index / int(Derived::InnerSizeAtCompileTime), |
| inner = index % int(Derived::InnerSizeAtCompileTime), |
| alignment = Derived::Alignment |
| }; |
| |
| typedef typename Derived::Scalar Scalar; |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| |
| static EIGEN_STRONG_INLINE PacketScalar run(const Derived &mat, const Func&) |
| { |
| return mat.template packetByOuterInner<alignment,PacketScalar>(outer, inner); |
| } |
| }; |
| |
| /*************************************************************************** |
| * Part 3 : implementation of all cases |
| ***************************************************************************/ |
| |
| template<typename Func, typename Derived, |
| int Traversal = redux_traits<Func, Derived>::Traversal, |
| int Unrolling = redux_traits<Func, Derived>::Unrolling |
| > |
| struct redux_impl; |
| |
| template<typename Func, typename Derived> |
| struct redux_impl<Func, Derived, DefaultTraversal, NoUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| EIGEN_DEVICE_FUNC |
| static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| { |
| eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
| Scalar res; |
| res = mat.coeffByOuterInner(0, 0); |
| for(Index i = 1; i < mat.innerSize(); ++i) |
| res = func(res, mat.coeffByOuterInner(0, i)); |
| for(Index i = 1; i < mat.outerSize(); ++i) |
| for(Index j = 0; j < mat.innerSize(); ++j) |
| res = func(res, mat.coeffByOuterInner(i, j)); |
| return res; |
| } |
| }; |
| |
| template<typename Func, typename Derived> |
| struct redux_impl<Func,Derived, DefaultTraversal, CompleteUnrolling> |
| : public redux_novec_unroller<Func,Derived, 0, Derived::SizeAtCompileTime> |
| {}; |
| |
| template<typename Func, typename Derived> |
| struct redux_impl<Func, Derived, LinearVectorizedTraversal, NoUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| |
| static Scalar run(const Derived &mat, const Func& func) |
| { |
| const Index size = mat.size(); |
| |
| const Index packetSize = packet_traits<Scalar>::size; |
| const int packetAlignment = unpacket_traits<PacketScalar>::alignment; |
| enum { |
| alignment0 = (bool(Derived::Flags & DirectAccessBit) && bool(packet_traits<Scalar>::AlignedOnScalar)) ? int(packetAlignment) : int(Unaligned), |
| alignment = EIGEN_PLAIN_ENUM_MAX(alignment0, Derived::Alignment) |
| }; |
| const Index alignedStart = internal::first_default_aligned(mat.nestedExpression()); |
| const Index alignedSize2 = ((size-alignedStart)/(2*packetSize))*(2*packetSize); |
| const Index alignedSize = ((size-alignedStart)/(packetSize))*(packetSize); |
| const Index alignedEnd2 = alignedStart + alignedSize2; |
| const Index alignedEnd = alignedStart + alignedSize; |
| Scalar res; |
| if(alignedSize) |
| { |
| PacketScalar packet_res0 = mat.template packet<alignment,PacketScalar>(alignedStart); |
| if(alignedSize>packetSize) // we have at least two packets to partly unroll the loop |
| { |
| PacketScalar packet_res1 = mat.template packet<alignment,PacketScalar>(alignedStart+packetSize); |
| for(Index index = alignedStart + 2*packetSize; index < alignedEnd2; index += 2*packetSize) |
| { |
| packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(index)); |
| packet_res1 = func.packetOp(packet_res1, mat.template packet<alignment,PacketScalar>(index+packetSize)); |
| } |
| |
| packet_res0 = func.packetOp(packet_res0,packet_res1); |
| if(alignedEnd>alignedEnd2) |
| packet_res0 = func.packetOp(packet_res0, mat.template packet<alignment,PacketScalar>(alignedEnd2)); |
| } |
| res = func.predux(packet_res0); |
| |
| for(Index index = 0; index < alignedStart; ++index) |
| res = func(res,mat.coeff(index)); |
| |
| for(Index index = alignedEnd; index < size; ++index) |
| res = func(res,mat.coeff(index)); |
| } |
| else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = mat.coeff(0); |
| for(Index index = 1; index < size; ++index) |
| res = func(res,mat.coeff(index)); |
| } |
| |
| return res; |
| } |
| }; |
| |
| // NOTE: for SliceVectorizedTraversal we simply bypass unrolling |
| template<typename Func, typename Derived, int Unrolling> |
| struct redux_impl<Func, Derived, SliceVectorizedTraversal, Unrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename packet_traits<Scalar>::type PacketType; |
| |
| EIGEN_DEVICE_FUNC static Scalar run(const Derived &mat, const Func& func) |
| { |
| eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
| const Index innerSize = mat.innerSize(); |
| const Index outerSize = mat.outerSize(); |
| enum { |
| packetSize = packet_traits<Scalar>::size |
| }; |
| const Index packetedInnerSize = ((innerSize)/packetSize)*packetSize; |
| Scalar res; |
| if(packetedInnerSize) |
| { |
| PacketType packet_res = mat.template packet<Unaligned,PacketType>(0,0); |
| for(Index j=0; j<outerSize; ++j) |
| for(Index i=(j==0?packetSize:0); i<packetedInnerSize; i+=Index(packetSize)) |
| packet_res = func.packetOp(packet_res, mat.template packetByOuterInner<Unaligned,PacketType>(j,i)); |
| |
| res = func.predux(packet_res); |
| for(Index j=0; j<outerSize; ++j) |
| for(Index i=packetedInnerSize; i<innerSize; ++i) |
| res = func(res, mat.coeffByOuterInner(j,i)); |
| } |
| else // too small to vectorize anything. |
| // since this is dynamic-size hence inefficient anyway for such small sizes, don't try to optimize. |
| { |
| res = redux_impl<Func, Derived, DefaultTraversal, NoUnrolling>::run(mat, func); |
| } |
| |
| return res; |
| } |
| }; |
| |
| template<typename Func, typename Derived> |
| struct redux_impl<Func, Derived, LinearVectorizedTraversal, CompleteUnrolling> |
| { |
| typedef typename Derived::Scalar Scalar; |
| typedef typename packet_traits<Scalar>::type PacketScalar; |
| enum { |
| PacketSize = packet_traits<Scalar>::size, |
| Size = Derived::SizeAtCompileTime, |
| VectorizedSize = (Size / PacketSize) * PacketSize |
| }; |
| EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Scalar run(const Derived &mat, const Func& func) |
| { |
| eigen_assert(mat.rows()>0 && mat.cols()>0 && "you are using an empty matrix"); |
| if (VectorizedSize > 0) { |
| Scalar res = func.predux(redux_vec_unroller<Func, Derived, 0, Size / PacketSize>::run(mat,func)); |
| if (VectorizedSize != Size) |
| res = func(res,redux_novec_unroller<Func, Derived, VectorizedSize, Size-VectorizedSize>::run(mat,func)); |
| return res; |
| } |
| else { |
| return redux_novec_unroller<Func, Derived, 0, Size>::run(mat,func); |
| } |
| } |
| }; |
| |
| // evaluator adaptor |
| template<typename _XprType> |
| class redux_evaluator |
| { |
| public: |
| typedef _XprType XprType; |
| EIGEN_DEVICE_FUNC explicit redux_evaluator(const XprType &xpr) : m_evaluator(xpr), m_xpr(xpr) {} |
| |
| typedef typename XprType::Scalar Scalar; |
| typedef typename XprType::CoeffReturnType CoeffReturnType; |
| typedef typename XprType::PacketScalar PacketScalar; |
| typedef typename XprType::PacketReturnType PacketReturnType; |
| |
| enum { |
| MaxRowsAtCompileTime = XprType::MaxRowsAtCompileTime, |
| MaxColsAtCompileTime = XprType::MaxColsAtCompileTime, |
| // TODO we should not remove DirectAccessBit and rather find an elegant way to query the alignment offset at runtime from the evaluator |
| Flags = evaluator<XprType>::Flags & ~DirectAccessBit, |
| IsRowMajor = XprType::IsRowMajor, |
| SizeAtCompileTime = XprType::SizeAtCompileTime, |
| InnerSizeAtCompileTime = XprType::InnerSizeAtCompileTime, |
| CoeffReadCost = evaluator<XprType>::CoeffReadCost, |
| Alignment = evaluator<XprType>::Alignment |
| }; |
| |
| EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); } |
| EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); } |
| EIGEN_DEVICE_FUNC Index size() const { return m_xpr.size(); } |
| EIGEN_DEVICE_FUNC Index innerSize() const { return m_xpr.innerSize(); } |
| EIGEN_DEVICE_FUNC Index outerSize() const { return m_xpr.outerSize(); } |
| |
| EIGEN_DEVICE_FUNC |
| CoeffReturnType coeff(Index row, Index col) const |
| { return m_evaluator.coeff(row, col); } |
| |
| EIGEN_DEVICE_FUNC |
| CoeffReturnType coeff(Index index) const |
| { return m_evaluator.coeff(index); } |
| |
| template<int LoadMode, typename PacketType> |
| PacketReturnType packet(Index row, Index col) const |
| { return m_evaluator.template packet<LoadMode,PacketType>(row, col); } |
| |
| template<int LoadMode, typename PacketType> |
| PacketReturnType packet(Index index) const |
| { return m_evaluator.template packet<LoadMode,PacketType>(index); } |
| |
| EIGEN_DEVICE_FUNC |
| CoeffReturnType coeffByOuterInner(Index outer, Index inner) const |
| { return m_evaluator.coeff(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } |
| |
| template<int LoadMode, typename PacketType> |
| PacketReturnType packetByOuterInner(Index outer, Index inner) const |
| { return m_evaluator.template packet<LoadMode,PacketType>(IsRowMajor ? outer : inner, IsRowMajor ? inner : outer); } |
| |
| const XprType & nestedExpression() const { return m_xpr; } |
| |
| protected: |
| internal::evaluator<XprType> m_evaluator; |
| const XprType &m_xpr; |
| }; |
| |
| } // end namespace internal |
| |
| /*************************************************************************** |
| * Part 4 : public API |
| ***************************************************************************/ |
| |
| |
| /** \returns the result of a full redux operation on the whole matrix or vector using \a func |
| * |
| * The template parameter \a BinaryOp is the type of the functor \a func which must be |
| * an associative operator. Both current C++98 and C++11 functor styles are handled. |
| * |
| * \sa DenseBase::sum(), DenseBase::minCoeff(), DenseBase::maxCoeff(), MatrixBase::colwise(), MatrixBase::rowwise() |
| */ |
| template<typename Derived> |
| template<typename Func> |
| typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::redux(const Func& func) const |
| { |
| eigen_assert(this->rows()>0 && this->cols()>0 && "you are using an empty matrix"); |
| |
| typedef typename internal::redux_evaluator<Derived> ThisEvaluator; |
| ThisEvaluator thisEval(derived()); |
| |
| return internal::redux_impl<Func, ThisEvaluator>::run(thisEval, func); |
| } |
| |
| /** \returns the minimum of all coefficients of \c *this. |
| * \warning the result is undefined if \c *this contains NaN. |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::minCoeff() const |
| { |
| return derived().redux(Eigen::internal::scalar_min_op<Scalar>()); |
| } |
| |
| /** \returns the maximum of all coefficients of \c *this. |
| * \warning the result is undefined if \c *this contains NaN. |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::maxCoeff() const |
| { |
| return derived().redux(Eigen::internal::scalar_max_op<Scalar>()); |
| } |
| |
| /** \returns the sum of all coefficients of *this |
| * |
| * \sa trace(), prod(), mean() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::sum() const |
| { |
| if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
| return Scalar(0); |
| return derived().redux(Eigen::internal::scalar_sum_op<Scalar>()); |
| } |
| |
| /** \returns the mean of all coefficients of *this |
| * |
| * \sa trace(), prod(), sum() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::mean() const |
| { |
| return Scalar(derived().redux(Eigen::internal::scalar_sum_op<Scalar>())) / Scalar(this->size()); |
| } |
| |
| /** \returns the product of all coefficients of *this |
| * |
| * Example: \include MatrixBase_prod.cpp |
| * Output: \verbinclude MatrixBase_prod.out |
| * |
| * \sa sum(), mean(), trace() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| DenseBase<Derived>::prod() const |
| { |
| if(SizeAtCompileTime==0 || (SizeAtCompileTime==Dynamic && size()==0)) |
| return Scalar(1); |
| return derived().redux(Eigen::internal::scalar_product_op<Scalar>()); |
| } |
| |
| /** \returns the trace of \c *this, i.e. the sum of the coefficients on the main diagonal. |
| * |
| * \c *this can be any matrix, not necessarily square. |
| * |
| * \sa diagonal(), sum() |
| */ |
| template<typename Derived> |
| EIGEN_STRONG_INLINE typename internal::traits<Derived>::Scalar |
| MatrixBase<Derived>::trace() const |
| { |
| return derived().diagonal().sum(); |
| } |
| |
| } // end namespace Eigen |
| |
| #endif // EIGEN_REDUX_H |