| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "common.h" | 
 |  | 
 | /**  ZHEMV  performs the matrix-vector  operation | 
 |   * | 
 |   *     y := alpha*A*x + beta*y, | 
 |   * | 
 |   *  where alpha and beta are scalars, x and y are n element vectors and | 
 |   *  A is an n by n hermitian matrix. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) | 
 | { | 
 |   typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar); | 
 |   static const functype func[2] = { | 
 |     // array index: UP | 
 |     (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run), | 
 |     // array index: LO | 
 |     (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run), | 
 |   }; | 
 |  | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar alpha  = *reinterpret_cast<Scalar*>(palpha); | 
 |   Scalar beta   = *reinterpret_cast<Scalar*>(pbeta); | 
 |  | 
 |   // check arguments | 
 |   int info = 0; | 
 |   if(UPLO(*uplo)==INVALID)        info = 1; | 
 |   else if(*n<0)                   info = 2; | 
 |   else if(*lda<std::max(1,*n))    info = 5; | 
 |   else if(*incx==0)               info = 7; | 
 |   else if(*incy==0)               info = 10; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); | 
 |  | 
 |   if(*n==0) | 
 |     return 1; | 
 |  | 
 |   Scalar* actual_x = get_compact_vector(x,*n,*incx); | 
 |   Scalar* actual_y = get_compact_vector(y,*n,*incy); | 
 |  | 
 |   if(beta!=Scalar(1)) | 
 |   { | 
 |     if(beta==Scalar(0)) make_vector(actual_y, *n).setZero(); | 
 |     else                make_vector(actual_y, *n) *= beta; | 
 |   } | 
 |  | 
 |   if(alpha!=Scalar(0)) | 
 |   { | 
 |     int code = UPLO(*uplo); | 
 |     if(code>=2 || func[code]==0) | 
 |       return 0; | 
 |  | 
 |     func[code](*n, a, *lda, actual_x, actual_y, alpha); | 
 |   } | 
 |  | 
 |   if(actual_x!=x) delete[] actual_x; | 
 |   if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZHBMV  performs the matrix-vector  operation | 
 |   * | 
 |   *     y := alpha*A*x + beta*y, | 
 |   * | 
 |   *  where alpha and beta are scalars, x and y are n element vectors and | 
 |   *  A is an n by n hermitian band matrix, with k super-diagonals. | 
 |   */ | 
 | // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, | 
 | //                           RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | 
 | // { | 
 | //   return 1; | 
 | // } | 
 |  | 
 | /**  ZHPMV  performs the matrix-vector operation | 
 |   * | 
 |   *     y := alpha*A*x + beta*y, | 
 |   * | 
 |   *  where alpha and beta are scalars, x and y are n element vectors and | 
 |   *  A is an n by n hermitian matrix, supplied in packed form. | 
 |   */ | 
 | // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) | 
 | // { | 
 | //   return 1; | 
 | // } | 
 |  | 
 | /**  ZHPR    performs the hermitian rank 1 operation | 
 |   * | 
 |   *     A := alpha*x*conjg( x' ) + A, | 
 |   * | 
 |   *  where alpha is a real scalar, x is an n element vector and A is an | 
 |   *  n by n hermitian matrix, supplied in packed form. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) | 
 | { | 
 |   typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); | 
 |   static const functype func[2] = { | 
 |     // array index: UP | 
 |     (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run), | 
 |     // array index: LO | 
 |     (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run), | 
 |   }; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* ap = reinterpret_cast<Scalar*>(pap); | 
 |   RealScalar alpha = *palpha; | 
 |  | 
 |   int info = 0; | 
 |   if(UPLO(*uplo)==INVALID)                                            info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"HPR  ",&info,6); | 
 |  | 
 |   if(alpha==Scalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
 |  | 
 |   int code = UPLO(*uplo); | 
 |   if(code>=2 || func[code]==0) | 
 |     return 0; | 
 |  | 
 |   func[code](*n, ap, x_cpy, alpha); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZHPR2  performs the hermitian rank 2 operation | 
 |   * | 
 |   *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
 |   * | 
 |   *  where alpha is a scalar, x and y are n element vectors and A is an | 
 |   *  n by n hermitian matrix, supplied in packed form. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) | 
 | { | 
 |   typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); | 
 |   static const functype func[2] = { | 
 |     // array index: UP | 
 |     (internal::packed_rank2_update_selector<Scalar,int,Upper>::run), | 
 |     // array index: LO | 
 |     (internal::packed_rank2_update_selector<Scalar,int,Lower>::run), | 
 |   }; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar* ap = reinterpret_cast<Scalar*>(pap); | 
 |   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
 |  | 
 |   int info = 0; | 
 |   if(UPLO(*uplo)==INVALID)                                            info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   else if(*incy==0)                                                   info = 7; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); | 
 |  | 
 |   if(alpha==Scalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
 |   Scalar* y_cpy = get_compact_vector(y, *n, *incy); | 
 |  | 
 |   int code = UPLO(*uplo); | 
 |   if(code>=2 || func[code]==0) | 
 |     return 0; | 
 |  | 
 |   func[code](*n, ap, x_cpy, y_cpy, alpha); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |   if(y_cpy!=y)  delete[] y_cpy; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZHER   performs the hermitian rank 1 operation | 
 |   * | 
 |   *     A := alpha*x*conjg( x' ) + A, | 
 |   * | 
 |   *  where alpha is a real scalar, x is an n element vector and A is an | 
 |   *  n by n hermitian matrix. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) | 
 | { | 
 |   typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); | 
 |   static const functype func[2] = { | 
 |     // array index: UP | 
 |     (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run), | 
 |     // array index: LO | 
 |     (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run), | 
 |   }; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); | 
 |  | 
 |   int info = 0; | 
 |   if(UPLO(*uplo)==INVALID)                                            info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   else if(*lda<std::max(1,*n))                                        info = 7; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"HER  ",&info,6); | 
 |  | 
 |   if(alpha==RealScalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
 |  | 
 |   int code = UPLO(*uplo); | 
 |   if(code>=2 || func[code]==0) | 
 |     return 0; | 
 |  | 
 |   func[code](*n, a, *lda, x_cpy, x_cpy, alpha); | 
 |  | 
 |   matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZHER2  performs the hermitian rank 2 operation | 
 |   * | 
 |   *     A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, | 
 |   * | 
 |   *  where alpha is a scalar, x and y are n element vectors and A is an n | 
 |   *  by n hermitian matrix. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
 | { | 
 |   typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); | 
 |   static const functype func[2] = { | 
 |     // array index: UP | 
 |     (internal::rank2_update_selector<Scalar,int,Upper>::run), | 
 |     // array index: LO | 
 |     (internal::rank2_update_selector<Scalar,int,Lower>::run), | 
 |   }; | 
 |  | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
 |  | 
 |   int info = 0; | 
 |   if(UPLO(*uplo)==INVALID)                                            info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   else if(*incy==0)                                                   info = 7; | 
 |   else if(*lda<std::max(1,*n))                                        info = 9; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); | 
 |  | 
 |   if(alpha==Scalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x, *n, *incx); | 
 |   Scalar* y_cpy = get_compact_vector(y, *n, *incy); | 
 |  | 
 |   int code = UPLO(*uplo); | 
 |   if(code>=2 || func[code]==0) | 
 |     return 0; | 
 |  | 
 |   func[code](*n, a, *lda, x_cpy, y_cpy, alpha); | 
 |  | 
 |   matrix(a,*n,*n,*lda).diagonal().imag().setZero(); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |   if(y_cpy!=y)  delete[] y_cpy; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZGERU  performs the rank 1 operation | 
 |   * | 
 |   *     A := alpha*x*y' + A, | 
 |   * | 
 |   *  where alpha is a scalar, x is an m element vector, y is an n element | 
 |   *  vector and A is an m by n matrix. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
 | { | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
 |  | 
 |   int info = 0; | 
 |        if(*m<0)                                                       info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   else if(*incy==0)                                                   info = 7; | 
 |   else if(*lda<std::max(1,*m))                                        info = 9; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); | 
 |  | 
 |   if(alpha==Scalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x,*m,*incx); | 
 |   Scalar* y_cpy = get_compact_vector(y,*n,*incy); | 
 |  | 
 |   internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |   if(y_cpy!=y)  delete[] y_cpy; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /**  ZGERC  performs the rank 1 operation | 
 |   * | 
 |   *     A := alpha*x*conjg( y' ) + A, | 
 |   * | 
 |   *  where alpha is a scalar, x is an m element vector, y is an n element | 
 |   *  vector and A is an m by n matrix. | 
 |   */ | 
 | int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) | 
 | { | 
 |   Scalar* x = reinterpret_cast<Scalar*>(px); | 
 |   Scalar* y = reinterpret_cast<Scalar*>(py); | 
 |   Scalar* a = reinterpret_cast<Scalar*>(pa); | 
 |   Scalar alpha = *reinterpret_cast<Scalar*>(palpha); | 
 |  | 
 |   int info = 0; | 
 |        if(*m<0)                                                       info = 1; | 
 |   else if(*n<0)                                                       info = 2; | 
 |   else if(*incx==0)                                                   info = 5; | 
 |   else if(*incy==0)                                                   info = 7; | 
 |   else if(*lda<std::max(1,*m))                                        info = 9; | 
 |   if(info) | 
 |     return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); | 
 |  | 
 |   if(alpha==Scalar(0)) | 
 |     return 1; | 
 |  | 
 |   Scalar* x_cpy = get_compact_vector(x,*m,*incx); | 
 |   Scalar* y_cpy = get_compact_vector(y,*n,*incy); | 
 |  | 
 |   internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); | 
 |  | 
 |   if(x_cpy!=x)  delete[] x_cpy; | 
 |   if(y_cpy!=y)  delete[] y_cpy; | 
 |  | 
 |   return 1; | 
 | } |