|  |  | 
|  | #ifndef EIGEN_TEST_CUDA_COMMON_H | 
|  | #define EIGEN_TEST_CUDA_COMMON_H | 
|  |  | 
|  | #include <cuda.h> | 
|  | #include <cuda_runtime.h> | 
|  | #include <cuda_runtime_api.h> | 
|  | #include <iostream> | 
|  |  | 
|  | #ifndef __CUDACC__ | 
|  | dim3 threadIdx, blockDim, blockIdx; | 
|  | #endif | 
|  |  | 
|  | template<typename Kernel, typename Input, typename Output> | 
|  | void run_on_cpu(const Kernel& ker, int n, const Input& in, Output& out) | 
|  | { | 
|  | for(int i=0; i<n; i++) | 
|  | ker(i, in.data(), out.data()); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Kernel, typename Input, typename Output> | 
|  | __global__ | 
|  | void run_on_cuda_meta_kernel(const Kernel ker, int n, const Input* in, Output* out) | 
|  | { | 
|  | int i = threadIdx.x + blockIdx.x*blockDim.x; | 
|  | if(i<n) { | 
|  | ker(i, in, out); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Kernel, typename Input, typename Output> | 
|  | void run_on_cuda(const Kernel& ker, int n, const Input& in, Output& out) | 
|  | { | 
|  | typename Input::Scalar*  d_in; | 
|  | typename Output::Scalar* d_out; | 
|  | std::ptrdiff_t in_bytes  = in.size()  * sizeof(typename Input::Scalar); | 
|  | std::ptrdiff_t out_bytes = out.size() * sizeof(typename Output::Scalar); | 
|  |  | 
|  | cudaMalloc((void**)(&d_in),  in_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_in,  in.data(),  in_bytes,  cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_out, out.data(), out_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | // Simple and non-optimal 1D mapping assuming n is not too large | 
|  | // That's only for unit testing! | 
|  | dim3 Blocks(128); | 
|  | dim3 Grids( (n+int(Blocks.x)-1)/int(Blocks.x) ); | 
|  |  | 
|  | cudaThreadSynchronize(); | 
|  | run_on_cuda_meta_kernel<<<Grids,Blocks>>>(ker, n, d_in, d_out); | 
|  | cudaThreadSynchronize(); | 
|  |  | 
|  | // check inputs have not been modified | 
|  | cudaMemcpy(const_cast<typename Input::Scalar*>(in.data()),  d_in,  in_bytes,  cudaMemcpyDeviceToHost); | 
|  | cudaMemcpy(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost); | 
|  |  | 
|  | cudaFree(d_in); | 
|  | cudaFree(d_out); | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Kernel, typename Input, typename Output> | 
|  | void run_and_compare_to_cuda(const Kernel& ker, int n, const Input& in, Output& out) | 
|  | { | 
|  | Input  in_ref,  in_cuda; | 
|  | Output out_ref, out_cuda; | 
|  | #ifndef __CUDA_ARCH__ | 
|  | in_ref = in_cuda = in; | 
|  | out_ref = out_cuda = out; | 
|  | #endif | 
|  | run_on_cpu (ker, n, in_ref,  out_ref); | 
|  | run_on_cuda(ker, n, in_cuda, out_cuda); | 
|  | #ifndef __CUDA_ARCH__ | 
|  | VERIFY_IS_APPROX(in_ref, in_cuda); | 
|  | VERIFY_IS_APPROX(out_ref, out_cuda); | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | void ei_test_init_cuda() | 
|  | { | 
|  | int device = 0; | 
|  | cudaDeviceProp deviceProp; | 
|  | cudaGetDeviceProperties(&deviceProp, device); | 
|  | std::cout << "CUDA device info:\n"; | 
|  | std::cout << "  name:                        " << deviceProp.name << "\n"; | 
|  | std::cout << "  capability:                  " << deviceProp.major << "." << deviceProp.minor << "\n"; | 
|  | std::cout << "  multiProcessorCount:         " << deviceProp.multiProcessorCount << "\n"; | 
|  | std::cout << "  maxThreadsPerMultiProcessor: " << deviceProp.maxThreadsPerMultiProcessor << "\n"; | 
|  | std::cout << "  warpSize:                    " << deviceProp.warpSize << "\n"; | 
|  | std::cout << "  regsPerBlock:                " << deviceProp.regsPerBlock << "\n"; | 
|  | std::cout << "  concurrentKernels:           " << deviceProp.concurrentKernels << "\n"; | 
|  | std::cout << "  clockRate:                   " << deviceProp.clockRate << "\n"; | 
|  | std::cout << "  canMapHostMemory:            " << deviceProp.canMapHostMemory << "\n"; | 
|  | std::cout << "  computeMode:                 " << deviceProp.computeMode << "\n"; | 
|  | } | 
|  |  | 
|  | #endif // EIGEN_TEST_CUDA_COMMON_H |