| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <limits> | 
 | #include <Eigen/Eigenvalues> | 
 |  | 
 | template<typename MatrixType> void eigensolver(const MatrixType& m) | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   /* this test covers the following files: | 
 |      EigenSolver.h | 
 |   */ | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename NumTraits<Scalar>::Real RealScalar; | 
 |   typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType; | 
 |   typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex; | 
 |  | 
 |   MatrixType a = MatrixType::Random(rows,cols); | 
 |   MatrixType a1 = MatrixType::Random(rows,cols); | 
 |   MatrixType symmA =  a.adjoint() * a + a1.adjoint() * a1; | 
 |  | 
 |   EigenSolver<MatrixType> ei0(symmA); | 
 |   VERIFY_IS_EQUAL(ei0.info(), Success); | 
 |   VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix()); | 
 |   VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()), | 
 |     (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal())); | 
 |  | 
 |   EigenSolver<MatrixType> ei1(a); | 
 |   VERIFY_IS_EQUAL(ei1.info(), Success); | 
 |   VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix()); | 
 |   VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(), | 
 |                    ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); | 
 |   VERIFY_IS_APPROX(ei1.eigenvectors().colwise().norm(), RealVectorType::Ones(rows).transpose()); | 
 |   VERIFY_IS_APPROX(a.eigenvalues(), ei1.eigenvalues()); | 
 |  | 
 |   EigenSolver<MatrixType> ei2; | 
 |   ei2.setMaxIterations(RealSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); | 
 |   VERIFY_IS_EQUAL(ei2.info(), Success); | 
 |   VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); | 
 |   VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); | 
 |   if (rows > 2) { | 
 |     ei2.setMaxIterations(1).compute(a); | 
 |     VERIFY_IS_EQUAL(ei2.info(), NoConvergence); | 
 |     VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); | 
 |   } | 
 |  | 
 |   EigenSolver<MatrixType> eiNoEivecs(a, false); | 
 |   VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); | 
 |   VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); | 
 |   VERIFY_IS_APPROX(ei1.pseudoEigenvalueMatrix(), eiNoEivecs.pseudoEigenvalueMatrix()); | 
 |  | 
 |   MatrixType id = MatrixType::Identity(rows, cols); | 
 |   VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); | 
 |  | 
 |   if (rows > 2 && rows < 20) | 
 |   { | 
 |     // Test matrix with NaN | 
 |     a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); | 
 |     EigenSolver<MatrixType> eiNaN(a); | 
 |     VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); | 
 |   } | 
 |  | 
 |   // regression test for bug 1098 | 
 |   { | 
 |     EigenSolver<MatrixType> eig(a.adjoint() * a); | 
 |     eig.compute(a.adjoint() * a); | 
 |   } | 
 | } | 
 |  | 
 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) | 
 | { | 
 |   EigenSolver<MatrixType> eig; | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvalueMatrix()); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvalues()); | 
 |  | 
 |   MatrixType a = MatrixType::Random(m.rows(),m.cols()); | 
 |   eig.compute(a, false); | 
 |   VERIFY_RAISES_ASSERT(eig.eigenvectors()); | 
 |   VERIFY_RAISES_ASSERT(eig.pseudoEigenvectors()); | 
 | } | 
 |  | 
 | void test_eigensolver_generic() | 
 | { | 
 |   int s = 0; | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( eigensolver(Matrix4f()) ); | 
 |     s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(s,s)) ); | 
 |     TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 |  | 
 |     // some trivial but implementation-wise tricky cases | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(1,1)) ); | 
 |     CALL_SUBTEST_2( eigensolver(MatrixXd(2,2)) ); | 
 |     CALL_SUBTEST_3( eigensolver(Matrix<double,1,1>()) ); | 
 |     CALL_SUBTEST_4( eigensolver(Matrix2d()) ); | 
 |   } | 
 |  | 
 |   CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4f()) ); | 
 |   s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); | 
 |   CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXd(s,s)) ); | 
 |   CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<double,1,1>()) ); | 
 |   CALL_SUBTEST_4( eigensolver_verify_assert(Matrix2d()) ); | 
 |  | 
 |   // Test problem size constructors | 
 |   CALL_SUBTEST_5(EigenSolver<MatrixXf> tmp(s)); | 
 |  | 
 |   // regression test for bug 410 | 
 |   CALL_SUBTEST_2( | 
 |   { | 
 |      MatrixXd A(1,1); | 
 |      A(0,0) = std::sqrt(-1.); // is Not-a-Number | 
 |      Eigen::EigenSolver<MatrixXd> solver(A); | 
 |      VERIFY_IS_EQUAL(solver.info(), NumericalIssue); | 
 |   } | 
 |   ); | 
 |    | 
 |   // regression test for bug 793 | 
 | #ifdef EIGEN_TEST_PART_2 | 
 |   { | 
 |      MatrixXd a(3,3); | 
 |      a << 0,  0,  1, | 
 |           1,  1, 1, | 
 |           1, 1e+200,  1; | 
 |      Eigen::EigenSolver<MatrixXd> eig(a); | 
 |      VERIFY_IS_APPROX(a * eig.pseudoEigenvectors(), eig.pseudoEigenvectors() * eig.pseudoEigenvalueMatrix()); | 
 |      VERIFY_IS_APPROX(a * eig.eigenvectors(), eig.eigenvectors() * eig.eigenvalues().asDiagonal()); | 
 |   } | 
 | #endif | 
 |    | 
 |   TEST_SET_BUT_UNUSED_VARIABLE(s) | 
 | } |