| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | static bool g_called; | 
 | #define EIGEN_SPECIAL_SCALAR_MULTIPLE_PLUGIN { g_called = true; } | 
 |  | 
 | #include "main.h" | 
 |  | 
 | template<typename MatrixType> void linearStructure(const MatrixType& m) | 
 | { | 
 |   using std::abs; | 
 |   /* this test covers the following files: | 
 |      CwiseUnaryOp.h, CwiseBinaryOp.h, SelfCwiseBinaryOp.h  | 
 |   */ | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |  | 
 |   Index rows = m.rows(); | 
 |   Index cols = m.cols(); | 
 |  | 
 |   // this test relies a lot on Random.h, and there's not much more that we can do | 
 |   // to test it, hence I consider that we will have tested Random.h | 
 |   MatrixType m1 = MatrixType::Random(rows, cols), | 
 |              m2 = MatrixType::Random(rows, cols), | 
 |              m3(rows, cols); | 
 |  | 
 |   Scalar s1 = internal::random<Scalar>(); | 
 |   while (abs(s1)<1e-3) s1 = internal::random<Scalar>(); | 
 |  | 
 |   Index r = internal::random<Index>(0, rows-1), | 
 |         c = internal::random<Index>(0, cols-1); | 
 |  | 
 |   VERIFY_IS_APPROX(-(-m1),                  m1); | 
 |   VERIFY_IS_APPROX(m1+m1,                   2*m1); | 
 |   VERIFY_IS_APPROX(m1+m2-m1,                m2); | 
 |   VERIFY_IS_APPROX(-m2+m1+m2,               m1); | 
 |   VERIFY_IS_APPROX(m1*s1,                   s1*m1); | 
 |   VERIFY_IS_APPROX((m1+m2)*s1,              s1*m1+s1*m2); | 
 |   VERIFY_IS_APPROX((-m1+m2)*s1,             -s1*m1+s1*m2); | 
 |   m3 = m2; m3 += m1; | 
 |   VERIFY_IS_APPROX(m3,                      m1+m2); | 
 |   m3 = m2; m3 -= m1; | 
 |   VERIFY_IS_APPROX(m3,                      m2-m1); | 
 |   m3 = m2; m3 *= s1; | 
 |   VERIFY_IS_APPROX(m3,                      s1*m2); | 
 |   if(!NumTraits<Scalar>::IsInteger) | 
 |   { | 
 |     m3 = m2; m3 /= s1; | 
 |     VERIFY_IS_APPROX(m3,                    m2/s1); | 
 |   } | 
 |  | 
 |   // again, test operator() to check const-qualification | 
 |   VERIFY_IS_APPROX((-m1)(r,c), -(m1(r,c))); | 
 |   VERIFY_IS_APPROX((m1-m2)(r,c), (m1(r,c))-(m2(r,c))); | 
 |   VERIFY_IS_APPROX((m1+m2)(r,c), (m1(r,c))+(m2(r,c))); | 
 |   VERIFY_IS_APPROX((s1*m1)(r,c), s1*(m1(r,c))); | 
 |   VERIFY_IS_APPROX((m1*s1)(r,c), (m1(r,c))*s1); | 
 |   if(!NumTraits<Scalar>::IsInteger) | 
 |     VERIFY_IS_APPROX((m1/s1)(r,c), (m1(r,c))/s1); | 
 |  | 
 |   // use .block to disable vectorization and compare to the vectorized version | 
 |   VERIFY_IS_APPROX(m1+m1.block(0,0,rows,cols), m1+m1); | 
 |   VERIFY_IS_APPROX(m1.cwiseProduct(m1.block(0,0,rows,cols)), m1.cwiseProduct(m1)); | 
 |   VERIFY_IS_APPROX(m1 - m1.block(0,0,rows,cols), m1 - m1); | 
 |   VERIFY_IS_APPROX(m1.block(0,0,rows,cols) * s1, m1 * s1); | 
 | } | 
 |  | 
 | // Make sure that complex * real and real * complex are properly optimized | 
 | template<typename MatrixType> void real_complex(DenseIndex rows = MatrixType::RowsAtCompileTime, DenseIndex cols = MatrixType::ColsAtCompileTime) | 
 | { | 
 |   typedef typename MatrixType::Scalar Scalar; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |    | 
 |   RealScalar s = internal::random<RealScalar>(); | 
 |   MatrixType m1 = MatrixType::Random(rows, cols); | 
 |    | 
 |   g_called = false; | 
 |   VERIFY_IS_APPROX(s*m1, Scalar(s)*m1); | 
 |   VERIFY(g_called && "real * matrix<complex> not properly optimized"); | 
 |    | 
 |   g_called = false; | 
 |   VERIFY_IS_APPROX(m1*s, m1*Scalar(s)); | 
 |   VERIFY(g_called && "matrix<complex> * real not properly optimized"); | 
 |    | 
 |   g_called = false; | 
 |   VERIFY_IS_APPROX(m1/s, m1/Scalar(s)); | 
 |   VERIFY(g_called && "matrix<complex> / real not properly optimized"); | 
 | } | 
 |  | 
 | void test_linearstructure() | 
 | { | 
 |   g_called = true; | 
 |   VERIFY(g_called); // avoid `unneeded-internal-declaration` warning. | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( linearStructure(Matrix<float, 1, 1>()) ); | 
 |     CALL_SUBTEST_2( linearStructure(Matrix2f()) ); | 
 |     CALL_SUBTEST_3( linearStructure(Vector3d()) ); | 
 |     CALL_SUBTEST_4( linearStructure(Matrix4d()) ); | 
 |     CALL_SUBTEST_5( linearStructure(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
 |     CALL_SUBTEST_6( linearStructure(MatrixXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_7( linearStructure(MatrixXi (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_8( linearStructure(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) ); | 
 |     CALL_SUBTEST_9( linearStructure(ArrayXXf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |     CALL_SUBTEST_10( linearStructure(ArrayXXcf (internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) ); | 
 |      | 
 |     CALL_SUBTEST_11( real_complex<Matrix4cd>() ); | 
 |     CALL_SUBTEST_11( real_complex<MatrixXcf>(10,10) ); | 
 |     CALL_SUBTEST_11( real_complex<ArrayXXcf>(10,10) ); | 
 |   } | 
 |    | 
 | #ifdef EIGEN_TEST_PART_4 | 
 |   { | 
 |     // make sure that /=scalar and /scalar do not overflow | 
 |     // rational: 1.0/4.94e-320 overflow, but m/4.94e-320 should not | 
 |     Matrix4d m2, m3; | 
 |     m3 = m2 =  Matrix4d::Random()*1e-20; | 
 |     m2 = m2 / 4.9e-320; | 
 |     VERIFY_IS_APPROX(m2.cwiseQuotient(m2), Matrix4d::Ones()); | 
 |     m3 /= 4.9e-320; | 
 |     VERIFY_IS_APPROX(m3.cwiseQuotient(m3), Matrix4d::Ones()); | 
 |      | 
 |      | 
 |   } | 
 | #endif | 
 | } |