| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 | #include <Eigen/LU> | 
 | using namespace std; | 
 |  | 
 | template<typename MatrixType> void lu_non_invertible() | 
 | { | 
 |   typedef typename MatrixType::Index Index; | 
 |   typedef typename MatrixType::RealScalar RealScalar; | 
 |   /* this test covers the following files: | 
 |      LU.h | 
 |   */ | 
 |   Index rows, cols, cols2; | 
 |   if(MatrixType::RowsAtCompileTime==Dynamic) | 
 |   { | 
 |     rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); | 
 |   } | 
 |   else | 
 |   { | 
 |     rows = MatrixType::RowsAtCompileTime; | 
 |   } | 
 |   if(MatrixType::ColsAtCompileTime==Dynamic) | 
 |   { | 
 |     cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); | 
 |     cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); | 
 |   } | 
 |   else | 
 |   { | 
 |     cols2 = cols = MatrixType::ColsAtCompileTime; | 
 |   } | 
 |  | 
 |   enum { | 
 |     RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |     ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
 |   }; | 
 |   typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType; | 
 |   typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType; | 
 |   typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> | 
 |           CMatrixType; | 
 |   typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> | 
 |           RMatrixType; | 
 |  | 
 |   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); | 
 |  | 
 |   // The image of the zero matrix should consist of a single (zero) column vector | 
 |   VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1)); | 
 |  | 
 |   MatrixType m1(rows, cols), m3(rows, cols2); | 
 |   CMatrixType m2(cols, cols2); | 
 |   createRandomPIMatrixOfRank(rank, rows, cols, m1); | 
 |  | 
 |   FullPivLU<MatrixType> lu; | 
 |  | 
 |   // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank | 
 |   // of singular values are either 0 or 1. | 
 |   // So it's not clear at all that the epsilon should play any role there. | 
 |   lu.setThreshold(RealScalar(0.01)); | 
 |   lu.compute(m1); | 
 |  | 
 |   MatrixType u(rows,cols); | 
 |   u = lu.matrixLU().template triangularView<Upper>(); | 
 |   RMatrixType l = RMatrixType::Identity(rows,rows); | 
 |   l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>() | 
 |     = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols)); | 
 |  | 
 |   VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u); | 
 |  | 
 |   KernelMatrixType m1kernel = lu.kernel(); | 
 |   ImageMatrixType m1image = lu.image(m1); | 
 |  | 
 |   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); | 
 |   VERIFY(rank == lu.rank()); | 
 |   VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); | 
 |   VERIFY(!lu.isInjective()); | 
 |   VERIFY(!lu.isInvertible()); | 
 |   VERIFY(!lu.isSurjective()); | 
 |   VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); | 
 |   VERIFY(m1image.fullPivLu().rank() == rank); | 
 |   VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image); | 
 |  | 
 |   m2 = CMatrixType::Random(cols,cols2); | 
 |   m3 = m1*m2; | 
 |   m2 = CMatrixType::Random(cols,cols2); | 
 |   // test that the code, which does resize(), may be applied to an xpr | 
 |   m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3); | 
 |   VERIFY_IS_APPROX(m3, m1*m2); | 
 |  | 
 |   // test solve with transposed | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   m2 = m1.transpose()*m3; | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   lu.template _solve_impl_transposed<false>(m2, m3); | 
 |   VERIFY_IS_APPROX(m2, m1.transpose()*m3); | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   m3 = lu.transpose().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.transpose()*m3); | 
 |  | 
 |   // test solve with conjugate transposed | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   m2 = m1.adjoint()*m3; | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   lu.template _solve_impl_transposed<true>(m2, m3); | 
 |   VERIFY_IS_APPROX(m2, m1.adjoint()*m3); | 
 |   m3 = MatrixType::Random(rows,cols2); | 
 |   m3 = lu.adjoint().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.adjoint()*m3); | 
 | } | 
 |  | 
 | template<typename MatrixType> void lu_invertible() | 
 | { | 
 |   /* this test covers the following files: | 
 |      LU.h | 
 |   */ | 
 |   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
 |   Index size = MatrixType::RowsAtCompileTime; | 
 |   if( size==Dynamic) | 
 |     size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE); | 
 |  | 
 |   MatrixType m1(size, size), m2(size, size), m3(size, size); | 
 |   FullPivLU<MatrixType> lu; | 
 |   lu.setThreshold(RealScalar(0.01)); | 
 |   do { | 
 |     m1 = MatrixType::Random(size,size); | 
 |     lu.compute(m1); | 
 |   } while(!lu.isInvertible()); | 
 |  | 
 |   VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); | 
 |   VERIFY(0 == lu.dimensionOfKernel()); | 
 |   VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector | 
 |   VERIFY(size == lu.rank()); | 
 |   VERIFY(lu.isInjective()); | 
 |   VERIFY(lu.isSurjective()); | 
 |   VERIFY(lu.isInvertible()); | 
 |   VERIFY(lu.image(m1).fullPivLu().isInvertible()); | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m2 = lu.solve(m3); | 
 |   VERIFY_IS_APPROX(m3, m1*m2); | 
 |   VERIFY_IS_APPROX(m2, lu.inverse()*m3); | 
 |  | 
 |   // test solve with transposed | 
 |   lu.template _solve_impl_transposed<false>(m3, m2); | 
 |   VERIFY_IS_APPROX(m3, m1.transpose()*m2); | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m3 = lu.transpose().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.transpose()*m3); | 
 |  | 
 |   // test solve with conjugate transposed | 
 |   lu.template _solve_impl_transposed<true>(m3, m2); | 
 |   VERIFY_IS_APPROX(m3, m1.adjoint()*m2); | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m3 = lu.adjoint().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.adjoint()*m3); | 
 |  | 
 |   // Regression test for Bug 302 | 
 |   MatrixType m4 = MatrixType::Random(size,size); | 
 |   VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4); | 
 | } | 
 |  | 
 | template<typename MatrixType> void lu_partial_piv() | 
 | { | 
 |   /* this test covers the following files: | 
 |      PartialPivLU.h | 
 |   */ | 
 |   typedef typename MatrixType::Index Index; | 
 |   Index size = internal::random<Index>(1,4); | 
 |  | 
 |   MatrixType m1(size, size), m2(size, size), m3(size, size); | 
 |   m1.setRandom(); | 
 |   PartialPivLU<MatrixType> plu(m1); | 
 |  | 
 |   VERIFY_IS_APPROX(m1, plu.reconstructedMatrix()); | 
 |  | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m2 = plu.solve(m3); | 
 |   VERIFY_IS_APPROX(m3, m1*m2); | 
 |   VERIFY_IS_APPROX(m2, plu.inverse()*m3); | 
 |  | 
 |   // test solve with transposed | 
 |   plu.template _solve_impl_transposed<false>(m3, m2); | 
 |   VERIFY_IS_APPROX(m3, m1.transpose()*m2); | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m3 = plu.transpose().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.transpose()*m3); | 
 |  | 
 |   // test solve with conjugate transposed | 
 |   plu.template _solve_impl_transposed<true>(m3, m2); | 
 |   VERIFY_IS_APPROX(m3, m1.adjoint()*m2); | 
 |   m3 = MatrixType::Random(size,size); | 
 |   m3 = plu.adjoint().solve(m2); | 
 |   VERIFY_IS_APPROX(m2, m1.adjoint()*m3); | 
 | } | 
 |  | 
 | template<typename MatrixType> void lu_verify_assert() | 
 | { | 
 |   MatrixType tmp; | 
 |  | 
 |   FullPivLU<MatrixType> lu; | 
 |   VERIFY_RAISES_ASSERT(lu.matrixLU()) | 
 |   VERIFY_RAISES_ASSERT(lu.permutationP()) | 
 |   VERIFY_RAISES_ASSERT(lu.permutationQ()) | 
 |   VERIFY_RAISES_ASSERT(lu.kernel()) | 
 |   VERIFY_RAISES_ASSERT(lu.image(tmp)) | 
 |   VERIFY_RAISES_ASSERT(lu.solve(tmp)) | 
 |   VERIFY_RAISES_ASSERT(lu.determinant()) | 
 |   VERIFY_RAISES_ASSERT(lu.rank()) | 
 |   VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) | 
 |   VERIFY_RAISES_ASSERT(lu.isInjective()) | 
 |   VERIFY_RAISES_ASSERT(lu.isSurjective()) | 
 |   VERIFY_RAISES_ASSERT(lu.isInvertible()) | 
 |   VERIFY_RAISES_ASSERT(lu.inverse()) | 
 |  | 
 |   PartialPivLU<MatrixType> plu; | 
 |   VERIFY_RAISES_ASSERT(plu.matrixLU()) | 
 |   VERIFY_RAISES_ASSERT(plu.permutationP()) | 
 |   VERIFY_RAISES_ASSERT(plu.solve(tmp)) | 
 |   VERIFY_RAISES_ASSERT(plu.determinant()) | 
 |   VERIFY_RAISES_ASSERT(plu.inverse()) | 
 | } | 
 |  | 
 | void test_lu() | 
 | { | 
 |   for(int i = 0; i < g_repeat; i++) { | 
 |     CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() ); | 
 |     CALL_SUBTEST_1( lu_invertible<Matrix3f>() ); | 
 |     CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() ); | 
 |  | 
 |     CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) ); | 
 |     CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) ); | 
 |  | 
 |     CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() ); | 
 |     CALL_SUBTEST_3( lu_invertible<MatrixXf>() ); | 
 |     CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() ); | 
 |  | 
 |     CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() ); | 
 |     CALL_SUBTEST_4( lu_invertible<MatrixXd>() ); | 
 |     CALL_SUBTEST_4( lu_partial_piv<MatrixXd>() ); | 
 |     CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() ); | 
 |  | 
 |     CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() ); | 
 |     CALL_SUBTEST_5( lu_invertible<MatrixXcf>() ); | 
 |     CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() ); | 
 |  | 
 |     CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() ); | 
 |     CALL_SUBTEST_6( lu_invertible<MatrixXcd>() ); | 
 |     CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>() ); | 
 |     CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() ); | 
 |  | 
 |     CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() )); | 
 |  | 
 |     // Test problem size constructors | 
 |     CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) ); | 
 |     CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); ); | 
 |   } | 
 | } |