| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and | 
 | //                    Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #include <Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::Tensor; | 
 | using Eigen::array; | 
 |  | 
 | template <int DataLayout> | 
 | static void test_simple_reverse() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |  | 
 |   array<bool, 4> dim_rev; | 
 |   dim_rev[0] = false; | 
 |   dim_rev[1] = true; | 
 |   dim_rev[2] = true; | 
 |   dim_rev[3] = false; | 
 |  | 
 |   Tensor<float, 4, DataLayout> reversed_tensor; | 
 |   reversed_tensor = tensor.reverse(dim_rev); | 
 |  | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 5; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   dim_rev[0] = true; | 
 |   dim_rev[1] = false; | 
 |   dim_rev[2] = false; | 
 |   dim_rev[3] = false; | 
 |  | 
 |   reversed_tensor = tensor.reverse(dim_rev); | 
 |  | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); | 
 |  | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 5; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   dim_rev[0] = true; | 
 |   dim_rev[1] = false; | 
 |   dim_rev[2] = false; | 
 |   dim_rev[3] = true; | 
 |  | 
 |   reversed_tensor = tensor.reverse(dim_rev); | 
 |  | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); | 
 |   VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); | 
 |  | 
 |  | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     for (int j = 0; j < 3; ++j) { | 
 |       for (int k = 0; k < 5; ++k) { | 
 |         for (int l = 0; l < 7; ++l) { | 
 |           VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | template <int DataLayout> | 
 | static void test_expr_reverse(bool LValue) | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |  | 
 |   array<bool, 4> dim_rev; | 
 |   dim_rev[0] = false; | 
 |   dim_rev[1] = true; | 
 |   dim_rev[2] = false; | 
 |   dim_rev[3] = true; | 
 |  | 
 |   Tensor<float, 4, DataLayout> expected(2, 3, 5, 7); | 
 |   if (LValue) { | 
 |     expected.reverse(dim_rev) = tensor; | 
 |   } else { | 
 |     expected = tensor.reverse(dim_rev); | 
 |   } | 
 |  | 
 |   Tensor<float, 4, DataLayout> result(2,3,5,7); | 
 |  | 
 |   array<ptrdiff_t, 4> src_slice_dim; | 
 |   src_slice_dim[0] = 2; | 
 |   src_slice_dim[1] = 3; | 
 |   src_slice_dim[2] = 1; | 
 |   src_slice_dim[3] = 7; | 
 |   array<ptrdiff_t, 4> src_slice_start; | 
 |   src_slice_start[0] = 0; | 
 |   src_slice_start[1] = 0; | 
 |   src_slice_start[2] = 0; | 
 |   src_slice_start[3] = 0; | 
 |   array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim; | 
 |   array<ptrdiff_t, 4> dst_slice_start = src_slice_start; | 
 |  | 
 |   for (int i = 0; i < 5; ++i) { | 
 |     if (LValue) { | 
 |       result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = | 
 |           tensor.slice(src_slice_start, src_slice_dim); | 
 |     } else { | 
 |       result.slice(dst_slice_start, dst_slice_dim) = | 
 |           tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev); | 
 |     } | 
 |     src_slice_start[2] += 1; | 
 |     dst_slice_start[2] += 1; | 
 |   } | 
 |  | 
 |   VERIFY_IS_EQUAL(result.dimension(0), 2); | 
 |   VERIFY_IS_EQUAL(result.dimension(1), 3); | 
 |   VERIFY_IS_EQUAL(result.dimension(2), 5); | 
 |   VERIFY_IS_EQUAL(result.dimension(3), 7); | 
 |  | 
 |   for (int i = 0; i < expected.dimension(0); ++i) { | 
 |     for (int j = 0; j < expected.dimension(1); ++j) { | 
 |       for (int k = 0; k < expected.dimension(2); ++k) { | 
 |         for (int l = 0; l < expected.dimension(3); ++l) { | 
 |           VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   dst_slice_start[2] = 0; | 
 |   result.setRandom(); | 
 |   for (int i = 0; i < 5; ++i) { | 
 |      if (LValue) { | 
 |        result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = | 
 |            tensor.slice(dst_slice_start, dst_slice_dim); | 
 |      } else { | 
 |        result.slice(dst_slice_start, dst_slice_dim) = | 
 |            tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); | 
 |      } | 
 |     dst_slice_start[2] += 1; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < expected.dimension(0); ++i) { | 
 |     for (int j = 0; j < expected.dimension(1); ++j) { | 
 |       for (int k = 0; k < expected.dimension(2); ++k) { | 
 |         for (int l = 0; l < expected.dimension(3); ++l) { | 
 |           VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void test_cxx11_tensor_reverse() | 
 | { | 
 |   CALL_SUBTEST(test_simple_reverse<ColMajor>()); | 
 |   CALL_SUBTEST(test_simple_reverse<RowMajor>()); | 
 |   CALL_SUBTEST(test_expr_reverse<ColMajor>(true)); | 
 |   CALL_SUBTEST(test_expr_reverse<RowMajor>(true)); | 
 |   CALL_SUBTEST(test_expr_reverse<ColMajor>(false)); | 
 |   CALL_SUBTEST(test_expr_reverse<RowMajor>(false)); | 
 | } |