|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_EIGENSOLVER_H | 
|  | #define EIGEN_EIGENSOLVER_H | 
|  |  | 
|  | #include "./RealSchur.h" | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \eigenvalues_module \ingroup Eigenvalues_Module | 
|  | * | 
|  | * | 
|  | * \class EigenSolver | 
|  | * | 
|  | * \brief Computes eigenvalues and eigenvectors of general matrices | 
|  | * | 
|  | * \tparam _MatrixType the type of the matrix of which we are computing the | 
|  | * eigendecomposition; this is expected to be an instantiation of the Matrix | 
|  | * class template. Currently, only real matrices are supported. | 
|  | * | 
|  | * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars | 
|  | * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$.  If | 
|  | * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and | 
|  | * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V = | 
|  | * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we | 
|  | * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition. | 
|  | * | 
|  | * The eigenvalues and eigenvectors of a matrix may be complex, even when the | 
|  | * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D | 
|  | * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the | 
|  | * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to | 
|  | * have blocks of the form | 
|  | * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f] | 
|  | * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal.  These | 
|  | * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call | 
|  | * this variant of the eigendecomposition the pseudo-eigendecomposition. | 
|  | * | 
|  | * Call the function compute() to compute the eigenvalues and eigenvectors of | 
|  | * a given matrix. Alternatively, you can use the | 
|  | * EigenSolver(const MatrixType&, bool) constructor which computes the | 
|  | * eigenvalues and eigenvectors at construction time. Once the eigenvalue and | 
|  | * eigenvectors are computed, they can be retrieved with the eigenvalues() and | 
|  | * eigenvectors() functions. The pseudoEigenvalueMatrix() and | 
|  | * pseudoEigenvectors() methods allow the construction of the | 
|  | * pseudo-eigendecomposition. | 
|  | * | 
|  | * The documentation for EigenSolver(const MatrixType&, bool) contains an | 
|  | * example of the typical use of this class. | 
|  | * | 
|  | * \note The implementation is adapted from | 
|  | * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain). | 
|  | * Their code is based on EISPACK. | 
|  | * | 
|  | * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver | 
|  | */ | 
|  | template<typename _MatrixType> class EigenSolver | 
|  | { | 
|  | public: | 
|  |  | 
|  | /** \brief Synonym for the template parameter \p _MatrixType. */ | 
|  | typedef _MatrixType MatrixType; | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
|  | Options = MatrixType::Options, | 
|  | MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
|  | MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | /** \brief Scalar type for matrices of type #MatrixType. */ | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  |  | 
|  | /** \brief Complex scalar type for #MatrixType. | 
|  | * | 
|  | * This is \c std::complex<Scalar> if #Scalar is real (e.g., | 
|  | * \c float or \c double) and just \c Scalar if #Scalar is | 
|  | * complex. | 
|  | */ | 
|  | typedef std::complex<RealScalar> ComplexScalar; | 
|  |  | 
|  | /** \brief Type for vector of eigenvalues as returned by eigenvalues(). | 
|  | * | 
|  | * This is a column vector with entries of type #ComplexScalar. | 
|  | * The length of the vector is the size of #MatrixType. | 
|  | */ | 
|  | typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType; | 
|  |  | 
|  | /** \brief Type for matrix of eigenvectors as returned by eigenvectors(). | 
|  | * | 
|  | * This is a square matrix with entries of type #ComplexScalar. | 
|  | * The size is the same as the size of #MatrixType. | 
|  | */ | 
|  | typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType; | 
|  |  | 
|  | /** \brief Default constructor. | 
|  | * | 
|  | * The default constructor is useful in cases in which the user intends to | 
|  | * perform decompositions via EigenSolver::compute(const MatrixType&, bool). | 
|  | * | 
|  | * \sa compute() for an example. | 
|  | */ | 
|  | EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_eigenvectorsOk(false), m_realSchur(), m_matT(), m_tmp() {} | 
|  |  | 
|  | /** \brief Default constructor with memory preallocation | 
|  | * | 
|  | * Like the default constructor but with preallocation of the internal data | 
|  | * according to the specified problem \a size. | 
|  | * \sa EigenSolver() | 
|  | */ | 
|  | explicit EigenSolver(Index size) | 
|  | : m_eivec(size, size), | 
|  | m_eivalues(size), | 
|  | m_isInitialized(false), | 
|  | m_eigenvectorsOk(false), | 
|  | m_realSchur(size), | 
|  | m_matT(size, size), | 
|  | m_tmp(size) | 
|  | {} | 
|  |  | 
|  | /** \brief Constructor; computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
|  | *    eigenvalues are computed; if false, only the eigenvalues are | 
|  | *    computed. | 
|  | * | 
|  | * This constructor calls compute() to compute the eigenvalues | 
|  | * and eigenvectors. | 
|  | * | 
|  | * Example: \include EigenSolver_EigenSolver_MatrixType.cpp | 
|  | * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out | 
|  | * | 
|  | * \sa compute() | 
|  | */ | 
|  | template<typename InputType> | 
|  | explicit EigenSolver(const EigenBase<InputType>& matrix, bool computeEigenvectors = true) | 
|  | : m_eivec(matrix.rows(), matrix.cols()), | 
|  | m_eivalues(matrix.cols()), | 
|  | m_isInitialized(false), | 
|  | m_eigenvectorsOk(false), | 
|  | m_realSchur(matrix.cols()), | 
|  | m_matT(matrix.rows(), matrix.cols()), | 
|  | m_tmp(matrix.cols()) | 
|  | { | 
|  | compute(matrix.derived(), computeEigenvectors); | 
|  | } | 
|  |  | 
|  | /** \brief Returns the eigenvectors of given matrix. | 
|  | * | 
|  | * \returns  %Matrix whose columns are the (possibly complex) eigenvectors. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * EigenSolver(const MatrixType&,bool) or the member function | 
|  | * compute(const MatrixType&, bool) has been called before, and | 
|  | * \p computeEigenvectors was set to true (the default). | 
|  | * | 
|  | * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding | 
|  | * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The | 
|  | * eigenvectors are normalized to have (Euclidean) norm equal to one. The | 
|  | * matrix returned by this function is the matrix \f$ V \f$ in the | 
|  | * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists. | 
|  | * | 
|  | * Example: \include EigenSolver_eigenvectors.cpp | 
|  | * Output: \verbinclude EigenSolver_eigenvectors.out | 
|  | * | 
|  | * \sa eigenvalues(), pseudoEigenvectors() | 
|  | */ | 
|  | EigenvectorsType eigenvectors() const; | 
|  |  | 
|  | /** \brief Returns the pseudo-eigenvectors of given matrix. | 
|  | * | 
|  | * \returns  Const reference to matrix whose columns are the pseudo-eigenvectors. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * EigenSolver(const MatrixType&,bool) or the member function | 
|  | * compute(const MatrixType&, bool) has been called before, and | 
|  | * \p computeEigenvectors was set to true (the default). | 
|  | * | 
|  | * The real matrix \f$ V \f$ returned by this function and the | 
|  | * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix() | 
|  | * satisfy \f$ AV = VD \f$. | 
|  | * | 
|  | * Example: \include EigenSolver_pseudoEigenvectors.cpp | 
|  | * Output: \verbinclude EigenSolver_pseudoEigenvectors.out | 
|  | * | 
|  | * \sa pseudoEigenvalueMatrix(), eigenvectors() | 
|  | */ | 
|  | const MatrixType& pseudoEigenvectors() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | return m_eivec; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition. | 
|  | * | 
|  | * \returns  A block-diagonal matrix. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * EigenSolver(const MatrixType&,bool) or the member function | 
|  | * compute(const MatrixType&, bool) has been called before. | 
|  | * | 
|  | * The matrix \f$ D \f$ returned by this function is real and | 
|  | * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2 | 
|  | * blocks of the form | 
|  | * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$. | 
|  | * These blocks are not sorted in any particular order. | 
|  | * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by | 
|  | * pseudoEigenvectors() satisfy \f$ AV = VD \f$. | 
|  | * | 
|  | * \sa pseudoEigenvectors() for an example, eigenvalues() | 
|  | */ | 
|  | MatrixType pseudoEigenvalueMatrix() const; | 
|  |  | 
|  | /** \brief Returns the eigenvalues of given matrix. | 
|  | * | 
|  | * \returns A const reference to the column vector containing the eigenvalues. | 
|  | * | 
|  | * \pre Either the constructor | 
|  | * EigenSolver(const MatrixType&,bool) or the member function | 
|  | * compute(const MatrixType&, bool) has been called before. | 
|  | * | 
|  | * The eigenvalues are repeated according to their algebraic multiplicity, | 
|  | * so there are as many eigenvalues as rows in the matrix. The eigenvalues | 
|  | * are not sorted in any particular order. | 
|  | * | 
|  | * Example: \include EigenSolver_eigenvalues.cpp | 
|  | * Output: \verbinclude EigenSolver_eigenvalues.out | 
|  | * | 
|  | * \sa eigenvectors(), pseudoEigenvalueMatrix(), | 
|  | *     MatrixBase::eigenvalues() | 
|  | */ | 
|  | const EigenvalueType& eigenvalues() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
|  | return m_eivalues; | 
|  | } | 
|  |  | 
|  | /** \brief Computes eigendecomposition of given matrix. | 
|  | * | 
|  | * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed. | 
|  | * \param[in]  computeEigenvectors  If true, both the eigenvectors and the | 
|  | *    eigenvalues are computed; if false, only the eigenvalues are | 
|  | *    computed. | 
|  | * \returns    Reference to \c *this | 
|  | * | 
|  | * This function computes the eigenvalues of the real matrix \p matrix. | 
|  | * The eigenvalues() function can be used to retrieve them.  If | 
|  | * \p computeEigenvectors is true, then the eigenvectors are also computed | 
|  | * and can be retrieved by calling eigenvectors(). | 
|  | * | 
|  | * The matrix is first reduced to real Schur form using the RealSchur | 
|  | * class. The Schur decomposition is then used to compute the eigenvalues | 
|  | * and eigenvectors. | 
|  | * | 
|  | * The cost of the computation is dominated by the cost of the | 
|  | * Schur decomposition, which is very approximately \f$ 25n^3 \f$ | 
|  | * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors | 
|  | * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false. | 
|  | * | 
|  | * This method reuses of the allocated data in the EigenSolver object. | 
|  | * | 
|  | * Example: \include EigenSolver_compute.cpp | 
|  | * Output: \verbinclude EigenSolver_compute.out | 
|  | */ | 
|  | template<typename InputType> | 
|  | EigenSolver& compute(const EigenBase<InputType>& matrix, bool computeEigenvectors = true); | 
|  |  | 
|  | /** \returns NumericalIssue if the input contains INF or NaN values or overflow occurred. Returns Success otherwise. */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | /** \brief Sets the maximum number of iterations allowed. */ | 
|  | EigenSolver& setMaxIterations(Index maxIters) | 
|  | { | 
|  | m_realSchur.setMaxIterations(maxIters); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \brief Returns the maximum number of iterations. */ | 
|  | Index getMaxIterations() | 
|  | { | 
|  | return m_realSchur.getMaxIterations(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void doComputeEigenvectors(); | 
|  |  | 
|  | protected: | 
|  |  | 
|  | static void check_template_parameters() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
|  | EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL); | 
|  | } | 
|  |  | 
|  | MatrixType m_eivec; | 
|  | EigenvalueType m_eivalues; | 
|  | bool m_isInitialized; | 
|  | bool m_eigenvectorsOk; | 
|  | ComputationInfo m_info; | 
|  | RealSchur<MatrixType> m_realSchur; | 
|  | MatrixType m_matT; | 
|  |  | 
|  | typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType; | 
|  | ColumnVectorType m_tmp; | 
|  | }; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
|  | const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); | 
|  | Index n = m_eivalues.rows(); | 
|  | MatrixType matD = MatrixType::Zero(n,n); | 
|  | for (Index i=0; i<n; ++i) | 
|  | { | 
|  | if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)), precision)) | 
|  | matD.coeffRef(i,i) = numext::real(m_eivalues.coeff(i)); | 
|  | else | 
|  | { | 
|  | matD.template block<2,2>(i,i) <<  numext::real(m_eivalues.coeff(i)), numext::imag(m_eivalues.coeff(i)), | 
|  | -numext::imag(m_eivalues.coeff(i)), numext::real(m_eivalues.coeff(i)); | 
|  | ++i; | 
|  | } | 
|  | } | 
|  | return matD; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "EigenSolver is not initialized."); | 
|  | eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues."); | 
|  | const RealScalar precision = RealScalar(2)*NumTraits<RealScalar>::epsilon(); | 
|  | Index n = m_eivec.cols(); | 
|  | EigenvectorsType matV(n,n); | 
|  | for (Index j=0; j<n; ++j) | 
|  | { | 
|  | if (internal::isMuchSmallerThan(numext::imag(m_eivalues.coeff(j)), numext::real(m_eivalues.coeff(j)), precision) || j+1==n) | 
|  | { | 
|  | // we have a real eigen value | 
|  | matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>(); | 
|  | matV.col(j).normalize(); | 
|  | } | 
|  | else | 
|  | { | 
|  | // we have a pair of complex eigen values | 
|  | for (Index i=0; i<n; ++i) | 
|  | { | 
|  | matV.coeffRef(i,j)   = ComplexScalar(m_eivec.coeff(i,j),  m_eivec.coeff(i,j+1)); | 
|  | matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1)); | 
|  | } | 
|  | matV.col(j).normalize(); | 
|  | matV.col(j+1).normalize(); | 
|  | ++j; | 
|  | } | 
|  | } | 
|  | return matV; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename InputType> | 
|  | EigenSolver<MatrixType>& | 
|  | EigenSolver<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeEigenvectors) | 
|  | { | 
|  | check_template_parameters(); | 
|  |  | 
|  | using std::sqrt; | 
|  | using std::abs; | 
|  | using numext::isfinite; | 
|  | eigen_assert(matrix.cols() == matrix.rows()); | 
|  |  | 
|  | // Reduce to real Schur form. | 
|  | m_realSchur.compute(matrix.derived(), computeEigenvectors); | 
|  |  | 
|  | m_info = m_realSchur.info(); | 
|  |  | 
|  | if (m_info == Success) | 
|  | { | 
|  | m_matT = m_realSchur.matrixT(); | 
|  | if (computeEigenvectors) | 
|  | m_eivec = m_realSchur.matrixU(); | 
|  |  | 
|  | // Compute eigenvalues from matT | 
|  | m_eivalues.resize(matrix.cols()); | 
|  | Index i = 0; | 
|  | while (i < matrix.cols()) | 
|  | { | 
|  | if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0)) | 
|  | { | 
|  | m_eivalues.coeffRef(i) = m_matT.coeff(i, i); | 
|  | if(!(isfinite)(m_eivalues.coeffRef(i))) | 
|  | { | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = false; | 
|  | m_info = NumericalIssue; | 
|  | return *this; | 
|  | } | 
|  | ++i; | 
|  | } | 
|  | else | 
|  | { | 
|  | Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1)); | 
|  | Scalar z; | 
|  | // Compute z = sqrt(abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1))); | 
|  | // without overflow | 
|  | { | 
|  | Scalar t0 = m_matT.coeff(i+1, i); | 
|  | Scalar t1 = m_matT.coeff(i, i+1); | 
|  | Scalar maxval = numext::maxi<Scalar>(abs(p),numext::maxi<Scalar>(abs(t0),abs(t1))); | 
|  | t0 /= maxval; | 
|  | t1 /= maxval; | 
|  | Scalar p0 = p/maxval; | 
|  | z = maxval * sqrt(abs(p0 * p0 + t0 * t1)); | 
|  | } | 
|  |  | 
|  | m_eivalues.coeffRef(i)   = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z); | 
|  | m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z); | 
|  | if(!((isfinite)(m_eivalues.coeffRef(i)) && (isfinite)(m_eivalues.coeffRef(i+1)))) | 
|  | { | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = false; | 
|  | m_info = NumericalIssue; | 
|  | return *this; | 
|  | } | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute eigenvectors. | 
|  | if (computeEigenvectors) | 
|  | doComputeEigenvectors(); | 
|  | } | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_eigenvectorsOk = computeEigenvectors; | 
|  |  | 
|  | return *this; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void EigenSolver<MatrixType>::doComputeEigenvectors() | 
|  | { | 
|  | using std::abs; | 
|  | const Index size = m_eivec.cols(); | 
|  | const Scalar eps = NumTraits<Scalar>::epsilon(); | 
|  |  | 
|  | // inefficient! this is already computed in RealSchur | 
|  | Scalar norm(0); | 
|  | for (Index j = 0; j < size; ++j) | 
|  | { | 
|  | norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum(); | 
|  | } | 
|  |  | 
|  | // Backsubstitute to find vectors of upper triangular form | 
|  | if (norm == Scalar(0)) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (Index n = size-1; n >= 0; n--) | 
|  | { | 
|  | Scalar p = m_eivalues.coeff(n).real(); | 
|  | Scalar q = m_eivalues.coeff(n).imag(); | 
|  |  | 
|  | // Scalar vector | 
|  | if (q == Scalar(0)) | 
|  | { | 
|  | Scalar lastr(0), lastw(0); | 
|  | Index l = n; | 
|  |  | 
|  | m_matT.coeffRef(n,n) = Scalar(1); | 
|  | for (Index i = n-1; i >= 0; i--) | 
|  | { | 
|  | Scalar w = m_matT.coeff(i,i) - p; | 
|  | Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); | 
|  |  | 
|  | if (m_eivalues.coeff(i).imag() < Scalar(0)) | 
|  | { | 
|  | lastw = w; | 
|  | lastr = r; | 
|  | } | 
|  | else | 
|  | { | 
|  | l = i; | 
|  | if (m_eivalues.coeff(i).imag() == Scalar(0)) | 
|  | { | 
|  | if (w != Scalar(0)) | 
|  | m_matT.coeffRef(i,n) = -r / w; | 
|  | else | 
|  | m_matT.coeffRef(i,n) = -r / (eps * norm); | 
|  | } | 
|  | else // Solve real equations | 
|  | { | 
|  | Scalar x = m_matT.coeff(i,i+1); | 
|  | Scalar y = m_matT.coeff(i+1,i); | 
|  | Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag(); | 
|  | Scalar t = (x * lastr - lastw * r) / denom; | 
|  | m_matT.coeffRef(i,n) = t; | 
|  | if (abs(x) > abs(lastw)) | 
|  | m_matT.coeffRef(i+1,n) = (-r - w * t) / x; | 
|  | else | 
|  | m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw; | 
|  | } | 
|  |  | 
|  | // Overflow control | 
|  | Scalar t = abs(m_matT.coeff(i,n)); | 
|  | if ((eps * t) * t > Scalar(1)) | 
|  | m_matT.col(n).tail(size-i) /= t; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (q < Scalar(0) && n > 0) // Complex vector | 
|  | { | 
|  | Scalar lastra(0), lastsa(0), lastw(0); | 
|  | Index l = n-1; | 
|  |  | 
|  | // Last vector component imaginary so matrix is triangular | 
|  | if (abs(m_matT.coeff(n,n-1)) > abs(m_matT.coeff(n-1,n))) | 
|  | { | 
|  | m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1); | 
|  | m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1); | 
|  | } | 
|  | else | 
|  | { | 
|  | ComplexScalar cc = ComplexScalar(Scalar(0),-m_matT.coeff(n-1,n)) / ComplexScalar(m_matT.coeff(n-1,n-1)-p,q); | 
|  | m_matT.coeffRef(n-1,n-1) = numext::real(cc); | 
|  | m_matT.coeffRef(n-1,n) = numext::imag(cc); | 
|  | } | 
|  | m_matT.coeffRef(n,n-1) = Scalar(0); | 
|  | m_matT.coeffRef(n,n) = Scalar(1); | 
|  | for (Index i = n-2; i >= 0; i--) | 
|  | { | 
|  | Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1)); | 
|  | Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1)); | 
|  | Scalar w = m_matT.coeff(i,i) - p; | 
|  |  | 
|  | if (m_eivalues.coeff(i).imag() < Scalar(0)) | 
|  | { | 
|  | lastw = w; | 
|  | lastra = ra; | 
|  | lastsa = sa; | 
|  | } | 
|  | else | 
|  | { | 
|  | l = i; | 
|  | if (m_eivalues.coeff(i).imag() == RealScalar(0)) | 
|  | { | 
|  | ComplexScalar cc = ComplexScalar(-ra,-sa) / ComplexScalar(w,q); | 
|  | m_matT.coeffRef(i,n-1) = numext::real(cc); | 
|  | m_matT.coeffRef(i,n) = numext::imag(cc); | 
|  | } | 
|  | else | 
|  | { | 
|  | // Solve complex equations | 
|  | Scalar x = m_matT.coeff(i,i+1); | 
|  | Scalar y = m_matT.coeff(i+1,i); | 
|  | Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q; | 
|  | Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q; | 
|  | if ((vr == Scalar(0)) && (vi == Scalar(0))) | 
|  | vr = eps * norm * (abs(w) + abs(q) + abs(x) + abs(y) + abs(lastw)); | 
|  |  | 
|  | ComplexScalar cc = ComplexScalar(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra) / ComplexScalar(vr,vi); | 
|  | m_matT.coeffRef(i,n-1) = numext::real(cc); | 
|  | m_matT.coeffRef(i,n) = numext::imag(cc); | 
|  | if (abs(x) > (abs(lastw) + abs(q))) | 
|  | { | 
|  | m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x; | 
|  | m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x; | 
|  | } | 
|  | else | 
|  | { | 
|  | cc = ComplexScalar(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n)) / ComplexScalar(lastw,q); | 
|  | m_matT.coeffRef(i+1,n-1) = numext::real(cc); | 
|  | m_matT.coeffRef(i+1,n) = numext::imag(cc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Overflow control | 
|  | Scalar t = numext::maxi<Scalar>(abs(m_matT.coeff(i,n-1)),abs(m_matT.coeff(i,n))); | 
|  | if ((eps * t) * t > Scalar(1)) | 
|  | m_matT.block(i, n-1, size-i, 2) /= t; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | // We handled a pair of complex conjugate eigenvalues, so need to skip them both | 
|  | n--; | 
|  | } | 
|  | else | 
|  | { | 
|  | eigen_assert(0 && "Internal bug in EigenSolver (INF or NaN has not been detected)"); // this should not happen | 
|  | } | 
|  | } | 
|  |  | 
|  | // Back transformation to get eigenvectors of original matrix | 
|  | for (Index j = size-1; j >= 0; j--) | 
|  | { | 
|  | m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1); | 
|  | m_eivec.col(j) = m_tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_EIGENSOLVER_H |