| /* | 
 |  Copyright (c) 2011, Intel Corporation. All rights reserved. | 
 |  | 
 |  Redistribution and use in source and binary forms, with or without modification, | 
 |  are permitted provided that the following conditions are met: | 
 |  | 
 |  * Redistributions of source code must retain the above copyright notice, this | 
 |    list of conditions and the following disclaimer. | 
 |  * Redistributions in binary form must reproduce the above copyright notice, | 
 |    this list of conditions and the following disclaimer in the documentation | 
 |    and/or other materials provided with the distribution. | 
 |  * Neither the name of Intel Corporation nor the names of its contributors may | 
 |    be used to endorse or promote products derived from this software without | 
 |    specific prior written permission. | 
 |  | 
 |  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
 |  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 |  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 |  DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR | 
 |  ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 |  (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 |  LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON | 
 |  ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 |  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 |  ******************************************************************************** | 
 |  *   Content : Eigen bindings to Intel(R) MKL PARDISO | 
 |  ******************************************************************************** | 
 | */ | 
 |  | 
 | #ifndef EIGEN_PARDISOSUPPORT_H | 
 | #define EIGEN_PARDISOSUPPORT_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | template<typename _MatrixType> class PardisoLU; | 
 | template<typename _MatrixType, int Options=Upper> class PardisoLLT; | 
 | template<typename _MatrixType, int Options=Upper> class PardisoLDLT; | 
 |  | 
 | namespace internal | 
 | { | 
 |   template<typename IndexType> | 
 |   struct pardiso_run_selector | 
 |   { | 
 |     static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, | 
 |                       IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) | 
 |     { | 
 |       IndexType error = 0; | 
 |       ::pardiso(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); | 
 |       return error; | 
 |     } | 
 |   }; | 
 |   template<> | 
 |   struct pardiso_run_selector<long long int> | 
 |   { | 
 |     typedef long long int IndexType; | 
 |     static IndexType run( _MKL_DSS_HANDLE_t pt, IndexType maxfct, IndexType mnum, IndexType type, IndexType phase, IndexType n, void *a, | 
 |                       IndexType *ia, IndexType *ja, IndexType *perm, IndexType nrhs, IndexType *iparm, IndexType msglvl, void *b, void *x) | 
 |     { | 
 |       IndexType error = 0; | 
 |       ::pardiso_64(pt, &maxfct, &mnum, &type, &phase, &n, a, ia, ja, perm, &nrhs, iparm, &msglvl, b, x, &error); | 
 |       return error; | 
 |     } | 
 |   }; | 
 |  | 
 |   template<class Pardiso> struct pardiso_traits; | 
 |  | 
 |   template<typename _MatrixType> | 
 |   struct pardiso_traits< PardisoLU<_MatrixType> > | 
 |   { | 
 |     typedef _MatrixType MatrixType; | 
 |     typedef typename _MatrixType::Scalar Scalar; | 
 |     typedef typename _MatrixType::RealScalar RealScalar; | 
 |     typedef typename _MatrixType::StorageIndex StorageIndex; | 
 |   }; | 
 |  | 
 |   template<typename _MatrixType, int Options> | 
 |   struct pardiso_traits< PardisoLLT<_MatrixType, Options> > | 
 |   { | 
 |     typedef _MatrixType MatrixType; | 
 |     typedef typename _MatrixType::Scalar Scalar; | 
 |     typedef typename _MatrixType::RealScalar RealScalar; | 
 |     typedef typename _MatrixType::StorageIndex StorageIndex; | 
 |   }; | 
 |  | 
 |   template<typename _MatrixType, int Options> | 
 |   struct pardiso_traits< PardisoLDLT<_MatrixType, Options> > | 
 |   { | 
 |     typedef _MatrixType MatrixType; | 
 |     typedef typename _MatrixType::Scalar Scalar; | 
 |     typedef typename _MatrixType::RealScalar RealScalar; | 
 |     typedef typename _MatrixType::StorageIndex StorageIndex;     | 
 |   }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | template<class Derived> | 
 | class PardisoImpl : public SparseSolverBase<Derived> | 
 | { | 
 |   protected: | 
 |     typedef SparseSolverBase<Derived> Base; | 
 |     using Base::derived; | 
 |     using Base::m_isInitialized; | 
 |      | 
 |     typedef internal::pardiso_traits<Derived> Traits; | 
 |   public: | 
 |     using Base::_solve_impl; | 
 |      | 
 |     typedef typename Traits::MatrixType MatrixType; | 
 |     typedef typename Traits::Scalar Scalar; | 
 |     typedef typename Traits::RealScalar RealScalar; | 
 |     typedef typename Traits::StorageIndex StorageIndex; | 
 |     typedef SparseMatrix<Scalar,RowMajor,StorageIndex> SparseMatrixType; | 
 |     typedef Matrix<Scalar,Dynamic,1> VectorType; | 
 |     typedef Matrix<StorageIndex, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
 |     typedef Matrix<StorageIndex, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
 |     typedef Array<StorageIndex,64,1,DontAlign> ParameterType; | 
 |     enum { | 
 |       ScalarIsComplex = NumTraits<Scalar>::IsComplex, | 
 |       ColsAtCompileTime = Dynamic, | 
 |       MaxColsAtCompileTime = Dynamic | 
 |     }; | 
 |  | 
 |     PardisoImpl() | 
 |       : m_analysisIsOk(false), m_factorizationIsOk(false) | 
 |     { | 
 |       eigen_assert((sizeof(StorageIndex) >= sizeof(_INTEGER_t) && sizeof(StorageIndex) <= 8) && "Non-supported index type"); | 
 |       m_iparm.setZero(); | 
 |       m_msglvl = 0; // No output | 
 |       m_isInitialized = false; | 
 |     } | 
 |  | 
 |     ~PardisoImpl() | 
 |     { | 
 |       pardisoRelease(); | 
 |     } | 
 |  | 
 |     inline Index cols() const { return m_size; } | 
 |     inline Index rows() const { return m_size; } | 
 |    | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was successful, | 
 |       *          \c NumericalIssue if the matrix appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
 |       return m_info; | 
 |     } | 
 |  | 
 |     /** \warning for advanced usage only. | 
 |       * \returns a reference to the parameter array controlling PARDISO. | 
 |       * See the PARDISO manual to know how to use it. */ | 
 |     ParameterType& pardisoParameterArray() | 
 |     { | 
 |       return m_iparm; | 
 |     } | 
 |      | 
 |     /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
 |       * | 
 |       * This function is particularly useful when solving for several problems having the same structure. | 
 |       *  | 
 |       * \sa factorize() | 
 |       */ | 
 |     Derived& analyzePattern(const MatrixType& matrix); | 
 |      | 
 |     /** Performs a numeric decomposition of \a matrix | 
 |       * | 
 |       * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. | 
 |       * | 
 |       * \sa analyzePattern() | 
 |       */ | 
 |     Derived& factorize(const MatrixType& matrix); | 
 |  | 
 |     Derived& compute(const MatrixType& matrix); | 
 |  | 
 |     template<typename Rhs,typename Dest> | 
 |     void _solve_impl(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const; | 
 |  | 
 |   protected: | 
 |     void pardisoRelease() | 
 |     { | 
 |       if(m_isInitialized) // Factorization ran at least once | 
 |       { | 
 |         internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, -1, internal::convert_index<StorageIndex>(m_size),0, 0, 0, m_perm.data(), 0, | 
 |                                                           m_iparm.data(), m_msglvl, NULL, NULL); | 
 |         m_isInitialized = false; | 
 |       } | 
 |     } | 
 |  | 
 |     void pardisoInit(int type) | 
 |     { | 
 |       m_type = type; | 
 |       bool symmetric = std::abs(m_type) < 10; | 
 |       m_iparm[0] = 1;   // No solver default | 
 |       m_iparm[1] = 2;   // use Metis for the ordering | 
 |       m_iparm[2] = 0;   // Reserved. Set to zero. (??Numbers of processors, value of OMP_NUM_THREADS??) | 
 |       m_iparm[3] = 0;   // No iterative-direct algorithm | 
 |       m_iparm[4] = 0;   // No user fill-in reducing permutation | 
 |       m_iparm[5] = 0;   // Write solution into x, b is left unchanged | 
 |       m_iparm[6] = 0;   // Not in use | 
 |       m_iparm[7] = 2;   // Max numbers of iterative refinement steps | 
 |       m_iparm[8] = 0;   // Not in use | 
 |       m_iparm[9] = 13;  // Perturb the pivot elements with 1E-13 | 
 |       m_iparm[10] = symmetric ? 0 : 1; // Use nonsymmetric permutation and scaling MPS | 
 |       m_iparm[11] = 0;  // Not in use | 
 |       m_iparm[12] = symmetric ? 0 : 1;  // Maximum weighted matching algorithm is switched-off (default for symmetric). | 
 |                                         // Try m_iparm[12] = 1 in case of inappropriate accuracy | 
 |       m_iparm[13] = 0;  // Output: Number of perturbed pivots | 
 |       m_iparm[14] = 0;  // Not in use | 
 |       m_iparm[15] = 0;  // Not in use | 
 |       m_iparm[16] = 0;  // Not in use | 
 |       m_iparm[17] = -1; // Output: Number of nonzeros in the factor LU | 
 |       m_iparm[18] = -1; // Output: Mflops for LU factorization | 
 |       m_iparm[19] = 0;  // Output: Numbers of CG Iterations | 
 |        | 
 |       m_iparm[20] = 0;  // 1x1 pivoting | 
 |       m_iparm[26] = 0;  // No matrix checker | 
 |       m_iparm[27] = (sizeof(RealScalar) == 4) ? 1 : 0; | 
 |       m_iparm[34] = 1;  // C indexing | 
 |       m_iparm[36] = 0;  // CSR | 
 |       m_iparm[59] = 0;  // 0 - In-Core ; 1 - Automatic switch between In-Core and Out-of-Core modes ; 2 - Out-of-Core | 
 |        | 
 |       memset(m_pt, 0, sizeof(m_pt)); | 
 |     } | 
 |  | 
 |   protected: | 
 |     // cached data to reduce reallocation, etc. | 
 |      | 
 |     void manageErrorCode(Index error) const | 
 |     { | 
 |       switch(error) | 
 |       { | 
 |         case 0: | 
 |           m_info = Success; | 
 |           break; | 
 |         case -4: | 
 |         case -7: | 
 |           m_info = NumericalIssue; | 
 |           break; | 
 |         default: | 
 |           m_info = InvalidInput; | 
 |       } | 
 |     } | 
 |  | 
 |     mutable SparseMatrixType m_matrix; | 
 |     mutable ComputationInfo m_info; | 
 |     bool m_analysisIsOk, m_factorizationIsOk; | 
 |     StorageIndex m_type, m_msglvl; | 
 |     mutable void *m_pt[64]; | 
 |     mutable ParameterType m_iparm; | 
 |     mutable IntColVectorType m_perm; | 
 |     Index m_size; | 
 |      | 
 | }; | 
 |  | 
 | template<class Derived> | 
 | Derived& PardisoImpl<Derived>::compute(const MatrixType& a) | 
 | { | 
 |   m_size = a.rows(); | 
 |   eigen_assert(a.rows() == a.cols()); | 
 |  | 
 |   pardisoRelease(); | 
 |   m_perm.setZero(m_size); | 
 |   derived().getMatrix(a); | 
 |    | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 12, internal::convert_index<StorageIndex>(m_size), | 
 |                                                             m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), | 
 |                                                             m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |   manageErrorCode(error); | 
 |   m_analysisIsOk = true; | 
 |   m_factorizationIsOk = true; | 
 |   m_isInitialized = true; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<class Derived> | 
 | Derived& PardisoImpl<Derived>::analyzePattern(const MatrixType& a) | 
 | { | 
 |   m_size = a.rows(); | 
 |   eigen_assert(m_size == a.cols()); | 
 |  | 
 |   pardisoRelease(); | 
 |   m_perm.setZero(m_size); | 
 |   derived().getMatrix(a); | 
 |    | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 11, internal::convert_index<StorageIndex>(m_size), | 
 |                                                             m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), | 
 |                                                             m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |    | 
 |   manageErrorCode(error); | 
 |   m_analysisIsOk = true; | 
 |   m_factorizationIsOk = false; | 
 |   m_isInitialized = true; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<class Derived> | 
 | Derived& PardisoImpl<Derived>::factorize(const MatrixType& a) | 
 | { | 
 |   eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
 |   eigen_assert(m_size == a.rows() && m_size == a.cols()); | 
 |    | 
 |   derived().getMatrix(a); | 
 |  | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 22, internal::convert_index<StorageIndex>(m_size), | 
 |                                                             m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), | 
 |                                                             m_perm.data(), 0, m_iparm.data(), m_msglvl, NULL, NULL); | 
 |    | 
 |   manageErrorCode(error); | 
 |   m_factorizationIsOk = true; | 
 |   return derived(); | 
 | } | 
 |  | 
 | template<class Derived> | 
 | template<typename BDerived,typename XDerived> | 
 | void PardisoImpl<Derived>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived>& x) const | 
 | { | 
 |   if(m_iparm[0] == 0) // Factorization was not computed | 
 |   { | 
 |     m_info = InvalidInput; | 
 |     return; | 
 |   } | 
 |  | 
 |   //Index n = m_matrix.rows(); | 
 |   Index nrhs = Index(b.cols()); | 
 |   eigen_assert(m_size==b.rows()); | 
 |   eigen_assert(((MatrixBase<BDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major right hand sides are not supported"); | 
 |   eigen_assert(((MatrixBase<XDerived>::Flags & RowMajorBit) == 0 || nrhs == 1) && "Row-major matrices of unknowns are not supported"); | 
 |   eigen_assert(((nrhs == 1) || b.outerStride() == b.rows())); | 
 |  | 
 |  | 
 | //  switch (transposed) { | 
 | //    case SvNoTrans    : m_iparm[11] = 0 ; break; | 
 | //    case SvTranspose  : m_iparm[11] = 2 ; break; | 
 | //    case SvAdjoint    : m_iparm[11] = 1 ; break; | 
 | //    default: | 
 | //      //std::cerr << "Eigen: transposition  option \"" << transposed << "\" not supported by the PARDISO backend\n"; | 
 | //      m_iparm[11] = 0; | 
 | //  } | 
 |  | 
 |   Scalar* rhs_ptr = const_cast<Scalar*>(b.derived().data()); | 
 |   Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp; | 
 |    | 
 |   // Pardiso cannot solve in-place | 
 |   if(rhs_ptr == x.derived().data()) | 
 |   { | 
 |     tmp = b; | 
 |     rhs_ptr = tmp.data(); | 
 |   } | 
 |    | 
 |   Index error; | 
 |   error = internal::pardiso_run_selector<StorageIndex>::run(m_pt, 1, 1, m_type, 33, internal::convert_index<StorageIndex>(m_size), | 
 |                                                             m_matrix.valuePtr(), m_matrix.outerIndexPtr(), m_matrix.innerIndexPtr(), | 
 |                                                             m_perm.data(), internal::convert_index<StorageIndex>(nrhs), m_iparm.data(), m_msglvl, | 
 |                                                             rhs_ptr, x.derived().data()); | 
 |  | 
 |   manageErrorCode(error); | 
 | } | 
 |  | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |   * \class PardisoLU | 
 |   * \brief A sparse direct LU factorization and solver based on the PARDISO library | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a direct LU factorization | 
 |   * using the Intel MKL PARDISO library. The sparse matrix A must be squared and invertible. | 
 |   * The vectors or matrices X and B can be either dense or sparse. | 
 |   * | 
 |   * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |   * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |   * | 
 |   * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SparseLU | 
 |   */ | 
 | template<typename MatrixType> | 
 | class PardisoLU : public PardisoImpl< PardisoLU<MatrixType> > | 
 | { | 
 |   protected: | 
 |     typedef PardisoImpl<PardisoLU> Base; | 
 |     using Base::pardisoInit; | 
 |     using Base::m_matrix; | 
 |     friend class PardisoImpl< PardisoLU<MatrixType> >; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef typename Base::Scalar Scalar; | 
 |     typedef typename Base::RealScalar RealScalar; | 
 |  | 
 |     using Base::compute; | 
 |     using Base::solve; | 
 |  | 
 |     PardisoLU() | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? 13 : 11); | 
 |     } | 
 |  | 
 |     explicit PardisoLU(const MatrixType& matrix) | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? 13 : 11); | 
 |       compute(matrix); | 
 |     } | 
 |   protected: | 
 |     void getMatrix(const MatrixType& matrix) | 
 |     { | 
 |       m_matrix = matrix; | 
 |       m_matrix.makeCompressed(); | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |   * \class PardisoLLT | 
 |   * \brief A sparse direct Cholesky (LLT) factorization and solver based on the PARDISO library | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a LL^T Cholesky factorization | 
 |   * using the Intel MKL PARDISO library. The sparse matrix A must be selfajoint and positive definite. | 
 |   * The vectors or matrices X and B can be either dense or sparse. | 
 |   * | 
 |   * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |   * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |   * | 
 |   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam UpLo can be any bitwise combination of Upper, Lower. The default is Upper, meaning only the upper triangular part has to be used. | 
 |   *         Upper|Lower can be used to tell both triangular parts can be used as input. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SimplicialLLT | 
 |   */ | 
 | template<typename MatrixType, int _UpLo> | 
 | class PardisoLLT : public PardisoImpl< PardisoLLT<MatrixType,_UpLo> > | 
 | { | 
 |   protected: | 
 |     typedef PardisoImpl< PardisoLLT<MatrixType,_UpLo> > Base; | 
 |     using Base::pardisoInit; | 
 |     using Base::m_matrix; | 
 |     friend class PardisoImpl< PardisoLLT<MatrixType,_UpLo> >; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef typename Base::Scalar Scalar; | 
 |     typedef typename Base::RealScalar RealScalar; | 
 |     typedef typename Base::StorageIndex StorageIndex; | 
 |     enum { UpLo = _UpLo }; | 
 |     using Base::compute; | 
 |  | 
 |     PardisoLLT() | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? 4 : 2); | 
 |     } | 
 |  | 
 |     explicit PardisoLLT(const MatrixType& matrix) | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? 4 : 2); | 
 |       compute(matrix); | 
 |     } | 
 |      | 
 |   protected: | 
 |      | 
 |     void getMatrix(const MatrixType& matrix) | 
 |     { | 
 |       // PARDISO supports only upper, row-major matrices | 
 |       PermutationMatrix<Dynamic,Dynamic,StorageIndex> p_null; | 
 |       m_matrix.resize(matrix.rows(), matrix.cols()); | 
 |       m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null); | 
 |       m_matrix.makeCompressed(); | 
 |     } | 
 | }; | 
 |  | 
 | /** \ingroup PardisoSupport_Module | 
 |   * \class PardisoLDLT | 
 |   * \brief A sparse direct Cholesky (LDLT) factorization and solver based on the PARDISO library | 
 |   * | 
 |   * This class allows to solve for A.X = B sparse linear problems via a LDL^T Cholesky factorization | 
 |   * using the Intel MKL PARDISO library. The sparse matrix A is assumed to be selfajoint and positive definite. | 
 |   * For complex matrices, A can also be symmetric only, see the \a Options template parameter. | 
 |   * The vectors or matrices X and B can be either dense or sparse. | 
 |   * | 
 |   * By default, it runs in in-core mode. To enable PARDISO's out-of-core feature, set: | 
 |   * \code solver.pardisoParameterArray()[59] = 1; \endcode | 
 |   * | 
 |   * \tparam MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
 |   * \tparam Options can be any bitwise combination of Upper, Lower, and Symmetric. The default is Upper, meaning only the upper triangular part has to be used. | 
 |   *         Symmetric can be used for symmetric, non-selfadjoint complex matrices, the default being to assume a selfadjoint matrix. | 
 |   *         Upper|Lower can be used to tell both triangular parts can be used as input. | 
 |   * | 
 |   * \implsparsesolverconcept | 
 |   * | 
 |   * \sa \ref TutorialSparseSolverConcept, class SimplicialLDLT | 
 |   */ | 
 | template<typename MatrixType, int Options> | 
 | class PardisoLDLT : public PardisoImpl< PardisoLDLT<MatrixType,Options> > | 
 | { | 
 |   protected: | 
 |     typedef PardisoImpl< PardisoLDLT<MatrixType,Options> > Base; | 
 |     using Base::pardisoInit; | 
 |     using Base::m_matrix; | 
 |     friend class PardisoImpl< PardisoLDLT<MatrixType,Options> >; | 
 |  | 
 |   public: | 
 |  | 
 |     typedef typename Base::Scalar Scalar; | 
 |     typedef typename Base::RealScalar RealScalar; | 
 |     typedef typename Base::StorageIndex StorageIndex; | 
 |     using Base::compute; | 
 |     enum { UpLo = Options&(Upper|Lower) }; | 
 |  | 
 |     PardisoLDLT() | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); | 
 |     } | 
 |  | 
 |     explicit PardisoLDLT(const MatrixType& matrix) | 
 |       : Base() | 
 |     { | 
 |       pardisoInit(Base::ScalarIsComplex ? ( bool(Options&Symmetric) ? 6 : -4 ) : -2); | 
 |       compute(matrix); | 
 |     } | 
 |      | 
 |     void getMatrix(const MatrixType& matrix) | 
 |     { | 
 |       // PARDISO supports only upper, row-major matrices | 
 |       PermutationMatrix<Dynamic,Dynamic,StorageIndex> p_null; | 
 |       m_matrix.resize(matrix.rows(), matrix.cols()); | 
 |       m_matrix.template selfadjointView<Upper>() = matrix.template selfadjointView<UpLo>().twistedBy(p_null); | 
 |       m_matrix.makeCompressed(); | 
 |     } | 
 | }; | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_PARDISOSUPPORT_H |