|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> | 
|  | // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> | 
|  | // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> | 
|  | // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/ | 
|  |  | 
|  | // discard stack allocation as that too bypasses malloc | 
|  | #define EIGEN_STACK_ALLOCATION_LIMIT 0 | 
|  | #define EIGEN_RUNTIME_NO_MALLOC | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/SVD> | 
|  | #include <iostream> | 
|  | #include <Eigen/LU> | 
|  |  | 
|  |  | 
|  | #define SVD_DEFAULT(M) BDCSVD<M> | 
|  | #define SVD_FOR_MIN_NORM(M) BDCSVD<M> | 
|  | #include "svd_common.h" | 
|  |  | 
|  | // Check all variants of JacobiSVD | 
|  | template<typename MatrixType> | 
|  | void bdcsvd(const MatrixType& a = MatrixType(), bool pickrandom = true) | 
|  | { | 
|  | MatrixType m; | 
|  | if(pickrandom) { | 
|  | m.resizeLike(a); | 
|  | svd_fill_random(m); | 
|  | } | 
|  | else | 
|  | m = a; | 
|  |  | 
|  | CALL_SUBTEST(( svd_test_all_computation_options<BDCSVD<MatrixType> >(m, false)  )); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void bdcsvd_method() | 
|  | { | 
|  | enum { Size = MatrixType::RowsAtCompileTime }; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef Matrix<RealScalar, Size, 1> RealVecType; | 
|  | MatrixType m = MatrixType::Identity(); | 
|  | VERIFY_IS_APPROX(m.bdcSvd().singularValues(), RealVecType::Ones()); | 
|  | VERIFY_RAISES_ASSERT(m.bdcSvd().matrixU()); | 
|  | VERIFY_RAISES_ASSERT(m.bdcSvd().matrixV()); | 
|  | VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).solve(m), m); | 
|  | VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).transpose().solve(m), m); | 
|  | VERIFY_IS_APPROX(m.bdcSvd(ComputeFullU|ComputeFullV).adjoint().solve(m), m); | 
|  | } | 
|  |  | 
|  | // compare the Singular values returned with Jacobi and Bdc | 
|  | template<typename MatrixType> | 
|  | void compare_bdc_jacobi(const MatrixType& a = MatrixType(), unsigned int computationOptions = 0) | 
|  | { | 
|  | MatrixType m = MatrixType::Random(a.rows(), a.cols()); | 
|  | BDCSVD<MatrixType> bdc_svd(m); | 
|  | JacobiSVD<MatrixType> jacobi_svd(m); | 
|  | VERIFY_IS_APPROX(bdc_svd.singularValues(), jacobi_svd.singularValues()); | 
|  | if(computationOptions & ComputeFullU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU()); | 
|  | if(computationOptions & ComputeThinU) VERIFY_IS_APPROX(bdc_svd.matrixU(), jacobi_svd.matrixU()); | 
|  | if(computationOptions & ComputeFullV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV()); | 
|  | if(computationOptions & ComputeThinV) VERIFY_IS_APPROX(bdc_svd.matrixV(), jacobi_svd.matrixV()); | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(bdcsvd) | 
|  | { | 
|  | CALL_SUBTEST_3(( svd_verify_assert<BDCSVD<Matrix3f>  >(Matrix3f()) )); | 
|  | CALL_SUBTEST_4(( svd_verify_assert<BDCSVD<Matrix4d>  >(Matrix4d()) )); | 
|  | CALL_SUBTEST_7(( svd_verify_assert<BDCSVD<MatrixXf>  >(MatrixXf(10,12)) )); | 
|  | CALL_SUBTEST_8(( svd_verify_assert<BDCSVD<MatrixXcd> >(MatrixXcd(7,5)) )); | 
|  |  | 
|  | CALL_SUBTEST_101(( svd_all_trivial_2x2(bdcsvd<Matrix2cd>) )); | 
|  | CALL_SUBTEST_102(( svd_all_trivial_2x2(bdcsvd<Matrix2d>) )); | 
|  |  | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_3(( bdcsvd<Matrix3f>() )); | 
|  | CALL_SUBTEST_4(( bdcsvd<Matrix4d>() )); | 
|  | CALL_SUBTEST_5(( bdcsvd<Matrix<float,3,5> >() )); | 
|  |  | 
|  | int r = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2), | 
|  | c = internal::random<int>(1, EIGEN_TEST_MAX_SIZE/2); | 
|  |  | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(r) | 
|  | TEST_SET_BUT_UNUSED_VARIABLE(c) | 
|  |  | 
|  | CALL_SUBTEST_6((  bdcsvd(Matrix<double,Dynamic,2>(r,2)) )); | 
|  | CALL_SUBTEST_7((  bdcsvd(MatrixXf(r,c)) )); | 
|  | CALL_SUBTEST_7((  compare_bdc_jacobi(MatrixXf(r,c)) )); | 
|  | CALL_SUBTEST_10(( bdcsvd(MatrixXd(r,c)) )); | 
|  | CALL_SUBTEST_10(( compare_bdc_jacobi(MatrixXd(r,c)) )); | 
|  | CALL_SUBTEST_8((  bdcsvd(MatrixXcd(r,c)) )); | 
|  | CALL_SUBTEST_8((  compare_bdc_jacobi(MatrixXcd(r,c)) )); | 
|  |  | 
|  | // Test on inf/nan matrix | 
|  | CALL_SUBTEST_7(  (svd_inf_nan<BDCSVD<MatrixXf>, MatrixXf>()) ); | 
|  | CALL_SUBTEST_10( (svd_inf_nan<BDCSVD<MatrixXd>, MatrixXd>()) ); | 
|  | } | 
|  |  | 
|  | // test matrixbase method | 
|  | CALL_SUBTEST_1(( bdcsvd_method<Matrix2cd>() )); | 
|  | CALL_SUBTEST_3(( bdcsvd_method<Matrix3f>() )); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_7( BDCSVD<MatrixXf>(10,10) ); | 
|  |  | 
|  | // Check that preallocation avoids subsequent mallocs | 
|  | // Disabled because not supported by BDCSVD | 
|  | // CALL_SUBTEST_9( svd_preallocate<void>() ); | 
|  |  | 
|  | CALL_SUBTEST_2( svd_underoverflow<void>() ); | 
|  | } | 
|  |  |