|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  | #include <Eigen/LU> | 
|  | #include "solverbase.h" | 
|  | using namespace std; | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { | 
|  | return m.cwiseAbs().colwise().sum().maxCoeff(); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void lu_non_invertible() | 
|  | { | 
|  | STATIC_CHECK(( internal::is_same<typename FullPivLU<MatrixType>::StorageIndex,int>::value )); | 
|  |  | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | /* this test covers the following files: | 
|  | LU.h | 
|  | */ | 
|  | Index rows, cols, cols2; | 
|  | if(MatrixType::RowsAtCompileTime==Dynamic) | 
|  | { | 
|  | rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); | 
|  | } | 
|  | else | 
|  | { | 
|  | rows = MatrixType::RowsAtCompileTime; | 
|  | } | 
|  | if(MatrixType::ColsAtCompileTime==Dynamic) | 
|  | { | 
|  | cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); | 
|  | cols2 = internal::random<int>(2,EIGEN_TEST_MAX_SIZE); | 
|  | } | 
|  | else | 
|  | { | 
|  | cols2 = cols = MatrixType::ColsAtCompileTime; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
|  | ColsAtCompileTime = MatrixType::ColsAtCompileTime | 
|  | }; | 
|  | typedef typename internal::kernel_retval_base<FullPivLU<MatrixType> >::ReturnType KernelMatrixType; | 
|  | typedef typename internal::image_retval_base<FullPivLU<MatrixType> >::ReturnType ImageMatrixType; | 
|  | typedef Matrix<typename MatrixType::Scalar, ColsAtCompileTime, ColsAtCompileTime> | 
|  | CMatrixType; | 
|  | typedef Matrix<typename MatrixType::Scalar, RowsAtCompileTime, RowsAtCompileTime> | 
|  | RMatrixType; | 
|  |  | 
|  | Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); | 
|  |  | 
|  | // The image of the zero matrix should consist of a single (zero) column vector | 
|  | VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1)); | 
|  |  | 
|  | // The kernel of the zero matrix is the entire space, and thus is an invertible matrix of dimensions cols. | 
|  | KernelMatrixType kernel = MatrixType::Zero(rows,cols).fullPivLu().kernel(); | 
|  | VERIFY((kernel.fullPivLu().isInvertible())); | 
|  |  | 
|  | MatrixType m1(rows, cols), m3(rows, cols2); | 
|  | CMatrixType m2(cols, cols2); | 
|  | createRandomPIMatrixOfRank(rank, rows, cols, m1); | 
|  |  | 
|  | FullPivLU<MatrixType> lu; | 
|  |  | 
|  | // The special value 0.01 below works well in tests. Keep in mind that we're only computing the rank | 
|  | // of singular values are either 0 or 1. | 
|  | // So it's not clear at all that the epsilon should play any role there. | 
|  | lu.setThreshold(RealScalar(0.01)); | 
|  | lu.compute(m1); | 
|  |  | 
|  | MatrixType u(rows,cols); | 
|  | u = lu.matrixLU().template triangularView<Upper>(); | 
|  | RMatrixType l = RMatrixType::Identity(rows,rows); | 
|  | l.block(0,0,rows,(std::min)(rows,cols)).template triangularView<StrictlyLower>() | 
|  | = lu.matrixLU().block(0,0,rows,(std::min)(rows,cols)); | 
|  |  | 
|  | VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u); | 
|  |  | 
|  | KernelMatrixType m1kernel = lu.kernel(); | 
|  | ImageMatrixType m1image = lu.image(m1); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); | 
|  | VERIFY(rank == lu.rank()); | 
|  | VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); | 
|  | VERIFY(!lu.isInjective()); | 
|  | VERIFY(!lu.isInvertible()); | 
|  | VERIFY(!lu.isSurjective()); | 
|  | VERIFY_IS_MUCH_SMALLER_THAN((m1 * m1kernel), m1); | 
|  | VERIFY(m1image.fullPivLu().rank() == rank); | 
|  | VERIFY_IS_APPROX(m1 * m1.adjoint() * m1image, m1image); | 
|  |  | 
|  | check_solverbase<CMatrixType, MatrixType>(m1, lu, rows, cols, cols2); | 
|  |  | 
|  | m2 = CMatrixType::Random(cols,cols2); | 
|  | m3 = m1*m2; | 
|  | m2 = CMatrixType::Random(cols,cols2); | 
|  | // test that the code, which does resize(), may be applied to an xpr | 
|  | m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3); | 
|  | VERIFY_IS_APPROX(m3, m1*m2); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void lu_invertible() | 
|  | { | 
|  | /* this test covers the following files: | 
|  | FullPivLU.h | 
|  | */ | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  | Index size = MatrixType::RowsAtCompileTime; | 
|  | if( size==Dynamic) | 
|  | size = internal::random<Index>(1,EIGEN_TEST_MAX_SIZE); | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size), m3(size, size); | 
|  | FullPivLU<MatrixType> lu; | 
|  | lu.setThreshold(RealScalar(0.01)); | 
|  | do { | 
|  | m1 = MatrixType::Random(size,size); | 
|  | lu.compute(m1); | 
|  | } while(!lu.isInvertible()); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, lu.reconstructedMatrix()); | 
|  | VERIFY(0 == lu.dimensionOfKernel()); | 
|  | VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector | 
|  | VERIFY(size == lu.rank()); | 
|  | VERIFY(lu.isInjective()); | 
|  | VERIFY(lu.isSurjective()); | 
|  | VERIFY(lu.isInvertible()); | 
|  | VERIFY(lu.image(m1).fullPivLu().isInvertible()); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, lu, size, size, size); | 
|  |  | 
|  | MatrixType m1_inverse = lu.inverse(); | 
|  | m3 = MatrixType::Random(size,size); | 
|  | m2 = lu.solve(m3); | 
|  | VERIFY_IS_APPROX(m2, m1_inverse*m3); | 
|  |  | 
|  | RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); | 
|  | const RealScalar rcond_est = lu.rcond(); | 
|  | // Verify that the estimated condition number is within a factor of 10 of the | 
|  | // truth. | 
|  | VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); | 
|  |  | 
|  | // Regression test for Bug 302 | 
|  | MatrixType m4 = MatrixType::Random(size,size); | 
|  | VERIFY_IS_APPROX(lu.solve(m3*m4), lu.solve(m3)*m4); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void lu_partial_piv(Index size = MatrixType::ColsAtCompileTime) | 
|  | { | 
|  | /* this test covers the following files: | 
|  | PartialPivLU.h | 
|  | */ | 
|  | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
|  |  | 
|  | MatrixType m1(size, size), m2(size, size), m3(size, size); | 
|  | m1.setRandom(); | 
|  | PartialPivLU<MatrixType> plu(m1); | 
|  |  | 
|  | STATIC_CHECK(( internal::is_same<typename PartialPivLU<MatrixType>::StorageIndex,int>::value )); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, plu.reconstructedMatrix()); | 
|  |  | 
|  | check_solverbase<MatrixType, MatrixType>(m1, plu, size, size, size); | 
|  |  | 
|  | MatrixType m1_inverse = plu.inverse(); | 
|  | m3 = MatrixType::Random(size,size); | 
|  | m2 = plu.solve(m3); | 
|  | VERIFY_IS_APPROX(m2, m1_inverse*m3); | 
|  |  | 
|  | RealScalar rcond = (RealScalar(1) / matrix_l1_norm(m1)) / matrix_l1_norm(m1_inverse); | 
|  | const RealScalar rcond_est = plu.rcond(); | 
|  | // Verify that the estimate is within a factor of 10 of the truth. | 
|  | VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> void lu_verify_assert() | 
|  | { | 
|  | MatrixType tmp; | 
|  |  | 
|  | FullPivLU<MatrixType> lu; | 
|  | VERIFY_RAISES_ASSERT(lu.matrixLU()) | 
|  | VERIFY_RAISES_ASSERT(lu.permutationP()) | 
|  | VERIFY_RAISES_ASSERT(lu.permutationQ()) | 
|  | VERIFY_RAISES_ASSERT(lu.kernel()) | 
|  | VERIFY_RAISES_ASSERT(lu.image(tmp)) | 
|  | VERIFY_RAISES_ASSERT(lu.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(lu.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(lu.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(lu.determinant()) | 
|  | VERIFY_RAISES_ASSERT(lu.rank()) | 
|  | VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) | 
|  | VERIFY_RAISES_ASSERT(lu.isInjective()) | 
|  | VERIFY_RAISES_ASSERT(lu.isSurjective()) | 
|  | VERIFY_RAISES_ASSERT(lu.isInvertible()) | 
|  | VERIFY_RAISES_ASSERT(lu.inverse()) | 
|  |  | 
|  | PartialPivLU<MatrixType> plu; | 
|  | VERIFY_RAISES_ASSERT(plu.matrixLU()) | 
|  | VERIFY_RAISES_ASSERT(plu.permutationP()) | 
|  | VERIFY_RAISES_ASSERT(plu.solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(plu.transpose().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(plu.adjoint().solve(tmp)) | 
|  | VERIFY_RAISES_ASSERT(plu.determinant()) | 
|  | VERIFY_RAISES_ASSERT(plu.inverse()) | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(lu) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1( lu_non_invertible<Matrix3f>() ); | 
|  | CALL_SUBTEST_1( lu_invertible<Matrix3f>() ); | 
|  | CALL_SUBTEST_1( lu_verify_assert<Matrix3f>() ); | 
|  | CALL_SUBTEST_1( lu_partial_piv<Matrix3f>() ); | 
|  |  | 
|  | CALL_SUBTEST_2( (lu_non_invertible<Matrix<double, 4, 6> >()) ); | 
|  | CALL_SUBTEST_2( (lu_verify_assert<Matrix<double, 4, 6> >()) ); | 
|  | CALL_SUBTEST_2( lu_partial_piv<Matrix2d>() ); | 
|  | CALL_SUBTEST_2( lu_partial_piv<Matrix4d>() ); | 
|  | CALL_SUBTEST_2( (lu_partial_piv<Matrix<double,6,6> >()) ); | 
|  |  | 
|  | CALL_SUBTEST_3( lu_non_invertible<MatrixXf>() ); | 
|  | CALL_SUBTEST_3( lu_invertible<MatrixXf>() ); | 
|  | CALL_SUBTEST_3( lu_verify_assert<MatrixXf>() ); | 
|  |  | 
|  | CALL_SUBTEST_4( lu_non_invertible<MatrixXd>() ); | 
|  | CALL_SUBTEST_4( lu_invertible<MatrixXd>() ); | 
|  | CALL_SUBTEST_4( lu_partial_piv<MatrixXd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ); | 
|  | CALL_SUBTEST_4( lu_verify_assert<MatrixXd>() ); | 
|  |  | 
|  | CALL_SUBTEST_5( lu_non_invertible<MatrixXcf>() ); | 
|  | CALL_SUBTEST_5( lu_invertible<MatrixXcf>() ); | 
|  | CALL_SUBTEST_5( lu_verify_assert<MatrixXcf>() ); | 
|  |  | 
|  | CALL_SUBTEST_6( lu_non_invertible<MatrixXcd>() ); | 
|  | CALL_SUBTEST_6( lu_invertible<MatrixXcd>() ); | 
|  | CALL_SUBTEST_6( lu_partial_piv<MatrixXcd>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE)) ); | 
|  | CALL_SUBTEST_6( lu_verify_assert<MatrixXcd>() ); | 
|  |  | 
|  | CALL_SUBTEST_7(( lu_non_invertible<Matrix<float,Dynamic,16> >() )); | 
|  |  | 
|  | // Test problem size constructors | 
|  | CALL_SUBTEST_9( PartialPivLU<MatrixXf>(10) ); | 
|  | CALL_SUBTEST_9( FullPivLU<MatrixXf>(10, 20); ); | 
|  | } | 
|  | } |