|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> | 
|  | // Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA | 
|  | static long g_realloc_count = 0; | 
|  | #define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; | 
|  |  | 
|  | static long g_dense_op_sparse_count = 0; | 
|  | #define EIGEN_SPARSE_ASSIGNMENT_FROM_DENSE_OP_SPARSE_PLUGIN g_dense_op_sparse_count++; | 
|  | #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_ADD_DENSE_PLUGIN g_dense_op_sparse_count+=10; | 
|  | #define EIGEN_SPARSE_ASSIGNMENT_FROM_SPARSE_SUB_DENSE_PLUGIN g_dense_op_sparse_count+=20; | 
|  | #endif | 
|  |  | 
|  | #include "sparse.h" | 
|  |  | 
|  | template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) | 
|  | { | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<StorageIndex,2,1> Vector2; | 
|  |  | 
|  | const Index rows = ref.rows(); | 
|  | const Index cols = ref.cols(); | 
|  | //const Index inner = ref.innerSize(); | 
|  | //const Index outer = ref.outerSize(); | 
|  |  | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | typedef typename SparseMatrixType::RealScalar RealScalar; | 
|  | enum { Flags = SparseMatrixType::Flags }; | 
|  |  | 
|  | double density = (std::max)(8./(rows*cols), 0.01); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | Scalar eps = 1e-6; | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  | { | 
|  | SparseMatrixType m(rows, cols); | 
|  | DenseMatrix refMat = DenseMatrix::Zero(rows, cols); | 
|  | DenseVector vec1 = DenseVector::Random(rows); | 
|  |  | 
|  | std::vector<Vector2> zeroCoords; | 
|  | std::vector<Vector2> nonzeroCoords; | 
|  | initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); | 
|  |  | 
|  | // test coeff and coeffRef | 
|  | for (std::size_t i=0; i<zeroCoords.size(); ++i) | 
|  | { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); | 
|  | if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) | 
|  | VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); | 
|  | } | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | if(!nonzeroCoords.empty()) { | 
|  | m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  | refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); | 
|  | } | 
|  |  | 
|  | VERIFY_IS_APPROX(m, refMat); | 
|  |  | 
|  | // test assertion | 
|  | VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); | 
|  | VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); | 
|  | } | 
|  |  | 
|  | // test insert (inner random) | 
|  | { | 
|  | DenseMatrix m1(rows,cols); | 
|  | m1.setZero(); | 
|  | SparseMatrixType m2(rows,cols); | 
|  | bool call_reserve = internal::random<int>()%2; | 
|  | Index nnz = internal::random<int>(1,int(rows)/2); | 
|  | if(call_reserve) | 
|  | { | 
|  | if(internal::random<int>()%2) | 
|  | m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); | 
|  | else | 
|  | m2.reserve(m2.outerSize() * nnz); | 
|  | } | 
|  | g_realloc_count = 0; | 
|  | for (Index j=0; j<cols; ++j) | 
|  | { | 
|  | for (Index k=0; k<nnz; ++k) | 
|  | { | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | if (m1.coeff(i,j)==Scalar(0)) | 
|  | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if(call_reserve && !SparseMatrixType::IsRowMajor) | 
|  | { | 
|  | VERIFY(g_realloc_count==0); | 
|  | } | 
|  |  | 
|  | m2.finalize(); | 
|  | VERIFY_IS_APPROX(m2,m1); | 
|  | } | 
|  |  | 
|  | // test insert (fully random) | 
|  | { | 
|  | DenseMatrix m1(rows,cols); | 
|  | m1.setZero(); | 
|  | SparseMatrixType m2(rows,cols); | 
|  | if(internal::random<int>()%2) | 
|  | m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); | 
|  | for (int k=0; k<rows*cols; ++k) | 
|  | { | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,cols-1); | 
|  | if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2)) | 
|  | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | 
|  | else | 
|  | { | 
|  | Scalar v = internal::random<Scalar>(); | 
|  | m2.coeffRef(i,j) += v; | 
|  | m1(i,j) += v; | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(m2,m1); | 
|  | } | 
|  |  | 
|  | // test insert (un-compressed) | 
|  | for(int mode=0;mode<4;++mode) | 
|  | { | 
|  | DenseMatrix m1(rows,cols); | 
|  | m1.setZero(); | 
|  | SparseMatrixType m2(rows,cols); | 
|  | VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); | 
|  | m2.reserve(r); | 
|  | for (Index k=0; k<rows*cols; ++k) | 
|  | { | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,cols-1); | 
|  | if (m1.coeff(i,j)==Scalar(0)) | 
|  | m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); | 
|  | if(mode==3) | 
|  | m2.reserve(r); | 
|  | } | 
|  | if(internal::random<int>()%2) | 
|  | m2.makeCompressed(); | 
|  | VERIFY_IS_APPROX(m2,m1); | 
|  | } | 
|  |  | 
|  | // test basic computations | 
|  | { | 
|  | DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); | 
|  | DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m1(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | SparseMatrixType m3(rows, cols); | 
|  | SparseMatrixType m4(rows, cols); | 
|  | initSparse<Scalar>(density, refM1, m1); | 
|  | initSparse<Scalar>(density, refM2, m2); | 
|  | initSparse<Scalar>(density, refM3, m3); | 
|  | initSparse<Scalar>(density, refM4, m4); | 
|  |  | 
|  | if(internal::random<bool>()) | 
|  | m1.makeCompressed(); | 
|  |  | 
|  | Index m1_nnz = m1.nonZeros(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1*s1, refM1*s1); | 
|  | VERIFY_IS_APPROX(m1+m2, refM1+refM2); | 
|  | VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); | 
|  | VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); | 
|  | VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); | 
|  | VERIFY_IS_APPROX(m4=m1/s1, refM1/s1); | 
|  | VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz); | 
|  |  | 
|  | if(SparseMatrixType::IsRowMajor) | 
|  | VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); | 
|  | else | 
|  | VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); | 
|  |  | 
|  | DenseVector rv = DenseVector::Random(m1.cols()); | 
|  | DenseVector cv = DenseVector::Random(m1.rows()); | 
|  | Index r = internal::random<Index>(0,m1.rows()-2); | 
|  | Index c = internal::random<Index>(0,m1.cols()-1); | 
|  | VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); | 
|  | VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); | 
|  | VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); | 
|  | VERIFY_IS_APPROX(m1.real(), refM1.real()); | 
|  |  | 
|  | refM4.setRandom(); | 
|  | // sparse cwise* dense | 
|  | VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4)); | 
|  | // dense cwise* sparse | 
|  | VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); | 
|  | //     VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); | 
|  |  | 
|  | // mixed sparse-dense | 
|  | VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3); | 
|  | VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4); | 
|  | VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3); | 
|  | VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3)); | 
|  |  | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); | 
|  | VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3)); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); | 
|  | VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); | 
|  |  | 
|  |  | 
|  | VERIFY_IS_APPROX(m1.sum(), refM1.sum()); | 
|  |  | 
|  | m4 = m1; refM4 = m4; | 
|  |  | 
|  | VERIFY_IS_APPROX(m1*=s1, refM1*=s1); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  | VERIFY_IS_APPROX(m1/=s1, refM1/=s1); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); | 
|  | VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); | 
|  |  | 
|  | refM3 = refM1; | 
|  |  | 
|  | VERIFY_IS_APPROX(refM1+=m2, refM3+=refM2); | 
|  | VERIFY_IS_APPROX(refM1-=m2, refM3-=refM2); | 
|  |  | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2+refM4, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,10); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2+refM4, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2+refM4, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4+m2, refM3 =refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4+m2, refM3+=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4+m2, refM3-=refM2+refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  |  | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =m2-refM4, refM3 =refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,20); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=m2-refM4, refM3+=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=m2-refM4, refM3-=refM2-refM4);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1 =refM4-m2, refM3 =refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1+=refM4-m2, refM3+=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | g_dense_op_sparse_count=0; VERIFY_IS_APPROX(refM1-=refM4-m2, refM3-=refM4-refM2);  VERIFY_IS_EQUAL(g_dense_op_sparse_count,1); | 
|  | refM3 = m3; | 
|  |  | 
|  | if (rows>=2 && cols>=2) | 
|  | { | 
|  | VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) ); | 
|  | VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) ); | 
|  | VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) ); | 
|  | VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) ); | 
|  | } | 
|  | m1 = m4; refM1 = refM4; | 
|  |  | 
|  | // test aliasing | 
|  | VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  | m1 = m4; refM1 = refM4; | 
|  | VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  | m1 = m4; refM1 = refM4; | 
|  | VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  | m1 = m4; refM1 = refM4; | 
|  | VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); | 
|  | VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); | 
|  | m1 = m4; refM1 = refM4; | 
|  |  | 
|  | if(m1.isCompressed()) | 
|  | { | 
|  | VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum()); | 
|  | m1.coeffs() += s1; | 
|  | for(Index j = 0; j<m1.outerSize(); ++j) | 
|  | for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it) | 
|  | refM1(it.row(), it.col()) += s1; | 
|  | VERIFY_IS_APPROX(m1, refM1); | 
|  | } | 
|  |  | 
|  | // and/or | 
|  | { | 
|  | typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool; | 
|  | SpBool mb1 = m1.real().template cast<bool>(); | 
|  | SpBool mb2 = m2.real().template cast<bool>(); | 
|  | VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count()); | 
|  | VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); | 
|  | VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count()); | 
|  | SpBool mb3 = mb1 && mb2; | 
|  | if(mb1.coeffs().all() && mb2.coeffs().all()) | 
|  | { | 
|  | VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // test reverse iterators | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | std::vector<Scalar> ref_value(m2.innerSize()); | 
|  | std::vector<Index> ref_index(m2.innerSize()); | 
|  | if(internal::random<bool>()) | 
|  | m2.makeCompressed(); | 
|  | for(Index j = 0; j<m2.outerSize(); ++j) | 
|  | { | 
|  | Index count_forward = 0; | 
|  |  | 
|  | for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it) | 
|  | { | 
|  | ref_value[ref_value.size()-1-count_forward] = it.value(); | 
|  | ref_index[ref_index.size()-1-count_forward] = it.index(); | 
|  | count_forward++; | 
|  | } | 
|  | Index count_reverse = 0; | 
|  | for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it) | 
|  | { | 
|  | VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1); | 
|  | VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index()); | 
|  | count_reverse++; | 
|  | } | 
|  | VERIFY_IS_EQUAL(count_forward, count_reverse); | 
|  | } | 
|  | } | 
|  |  | 
|  | // test transpose | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); | 
|  | VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); | 
|  |  | 
|  | VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); | 
|  |  | 
|  | // check isApprox handles opposite storage order | 
|  | typename Transpose<SparseMatrixType>::PlainObject m3(m2); | 
|  | VERIFY(m2.isApprox(m3)); | 
|  | } | 
|  |  | 
|  | // test prune | 
|  | { | 
|  | SparseMatrixType m2(rows, cols); | 
|  | DenseMatrix refM2(rows, cols); | 
|  | refM2.setZero(); | 
|  | int countFalseNonZero = 0; | 
|  | int countTrueNonZero = 0; | 
|  | m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); | 
|  | for (Index j=0; j<m2.cols(); ++j) | 
|  | { | 
|  | for (Index i=0; i<m2.rows(); ++i) | 
|  | { | 
|  | float x = internal::random<float>(0,1); | 
|  | if (x<0.1f) | 
|  | { | 
|  | // do nothing | 
|  | } | 
|  | else if (x<0.5f) | 
|  | { | 
|  | countFalseNonZero++; | 
|  | m2.insert(i,j) = Scalar(0); | 
|  | } | 
|  | else | 
|  | { | 
|  | countTrueNonZero++; | 
|  | m2.insert(i,j) = Scalar(1); | 
|  | refM2(i,j) = Scalar(1); | 
|  | } | 
|  | } | 
|  | } | 
|  | if(internal::random<bool>()) | 
|  | m2.makeCompressed(); | 
|  | VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); | 
|  | if(countTrueNonZero>0) | 
|  | VERIFY_IS_APPROX(m2, refM2); | 
|  | m2.prune(Scalar(1)); | 
|  | VERIFY(countTrueNonZero==m2.nonZeros()); | 
|  | VERIFY_IS_APPROX(m2, refM2); | 
|  | } | 
|  |  | 
|  | // test setFromTriplets | 
|  | { | 
|  | typedef Triplet<Scalar,StorageIndex> TripletType; | 
|  | std::vector<TripletType> triplets; | 
|  | Index ntriplets = rows*cols; | 
|  | triplets.reserve(ntriplets); | 
|  | DenseMatrix refMat_sum  = DenseMatrix::Zero(rows,cols); | 
|  | DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); | 
|  | DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); | 
|  |  | 
|  | for(Index i=0;i<ntriplets;++i) | 
|  | { | 
|  | StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); | 
|  | StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); | 
|  | Scalar v = internal::random<Scalar>(); | 
|  | triplets.push_back(TripletType(r,c,v)); | 
|  | refMat_sum(r,c) += v; | 
|  | if(std::abs(refMat_prod(r,c))==0) | 
|  | refMat_prod(r,c) = v; | 
|  | else | 
|  | refMat_prod(r,c) *= v; | 
|  | refMat_last(r,c) = v; | 
|  | } | 
|  | SparseMatrixType m(rows,cols); | 
|  | m.setFromTriplets(triplets.begin(), triplets.end()); | 
|  | VERIFY_IS_APPROX(m, refMat_sum); | 
|  |  | 
|  | m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); | 
|  | VERIFY_IS_APPROX(m, refMat_prod); | 
|  | #if (defined(__cplusplus) && __cplusplus >= 201103L) | 
|  | m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); | 
|  | VERIFY_IS_APPROX(m, refMat_last); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // test Map | 
|  | { | 
|  | DenseMatrix refMat2(rows, cols), refMat3(rows, cols); | 
|  | SparseMatrixType m2(rows, cols), m3(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | initSparse<Scalar>(density, refMat3, m3); | 
|  | { | 
|  | Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); | 
|  | Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); | 
|  | VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | 
|  | VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | 
|  | } | 
|  | { | 
|  | MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); | 
|  | MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); | 
|  | VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | 
|  | VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); | 
|  | } | 
|  |  | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,cols-1); | 
|  | m2.coeffRef(i,j) = 123; | 
|  | if(internal::random<bool>()) | 
|  | m2.makeCompressed(); | 
|  | Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(),  m2.innerNonZeroPtr()); | 
|  | VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123)); | 
|  | VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123)); | 
|  | mapMat2.coeffRef(i,j) = -123; | 
|  | VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123)); | 
|  | } | 
|  |  | 
|  | // test triangularView | 
|  | { | 
|  | DenseMatrix refMat2(rows, cols), refMat3(rows, cols); | 
|  | SparseMatrixType m2(rows, cols), m3(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | refMat3 = refMat2.template triangularView<Lower>(); | 
|  | m3 = m2.template triangularView<Lower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | refMat3 = refMat2.template triangularView<Upper>(); | 
|  | m3 = m2.template triangularView<Upper>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | { | 
|  | refMat3 = refMat2.template triangularView<UnitUpper>(); | 
|  | m3 = m2.template triangularView<UnitUpper>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | refMat3 = refMat2.template triangularView<UnitLower>(); | 
|  | m3 = m2.template triangularView<UnitLower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  | } | 
|  |  | 
|  | refMat3 = refMat2.template triangularView<StrictlyUpper>(); | 
|  | m3 = m2.template triangularView<StrictlyUpper>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | refMat3 = refMat2.template triangularView<StrictlyLower>(); | 
|  | m3 = m2.template triangularView<StrictlyLower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | // check sparse-triangular to dense | 
|  | refMat3 = m2.template triangularView<StrictlyUpper>(); | 
|  | VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); | 
|  | } | 
|  |  | 
|  | // test selfadjointView | 
|  | if(!SparseMatrixType::IsRowMajor) | 
|  | { | 
|  | DenseMatrix refMat2(rows, rows), refMat3(rows, rows); | 
|  | SparseMatrixType m2(rows, rows), m3(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | refMat3 = refMat2.template selfadjointView<Lower>(); | 
|  | m3 = m2.template selfadjointView<Lower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | refMat3 += refMat2.template selfadjointView<Lower>(); | 
|  | m3 += m2.template selfadjointView<Lower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | refMat3 -= refMat2.template selfadjointView<Lower>(); | 
|  | m3 -= m2.template selfadjointView<Lower>(); | 
|  | VERIFY_IS_APPROX(m3, refMat3); | 
|  |  | 
|  | // selfadjointView only works for square matrices: | 
|  | SparseMatrixType m4(rows, rows+1); | 
|  | VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); | 
|  | VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); | 
|  | } | 
|  |  | 
|  | // test sparseView | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); | 
|  | SparseMatrixType m2(rows, rows); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); | 
|  |  | 
|  | // sparse view on expressions: | 
|  | VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval()); | 
|  | VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval()); | 
|  | VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval()); | 
|  | VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval()); | 
|  | } | 
|  |  | 
|  | // test diagonal | 
|  | { | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); | 
|  | DenseVector d = m2.diagonal(); | 
|  | VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); | 
|  | d = m2.diagonal().array(); | 
|  | VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); | 
|  | VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); | 
|  |  | 
|  | initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); | 
|  | m2.diagonal()      += refMat2.diagonal(); | 
|  | refMat2.diagonal() += refMat2.diagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test diagonal to sparse | 
|  | { | 
|  | DenseVector d = DenseVector::Random(rows); | 
|  | DenseMatrix refMat2 = d.asDiagonal(); | 
|  | SparseMatrixType m2; | 
|  | m2 = d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | SparseMatrixType m3(d.asDiagonal()); | 
|  | VERIFY_IS_APPROX(m3, refMat2); | 
|  | refMat2 += d.asDiagonal(); | 
|  | m2 += d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | m2.setZero();       m2 += d.asDiagonal(); | 
|  | refMat2.setZero();  refMat2 += d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | m2.setZero();       m2 -= d.asDiagonal(); | 
|  | refMat2.setZero();  refMat2 -= d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | m2.makeCompressed(); | 
|  | m2 += d.asDiagonal(); | 
|  | refMat2 += d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  |  | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | m2.makeCompressed(); | 
|  | VectorXi res(rows); | 
|  | for(Index i=0; i<rows; ++i) | 
|  | res(i) = internal::random<int>(0,3); | 
|  | m2.reserve(res); | 
|  | m2 -= d.asDiagonal(); | 
|  | refMat2 -= d.asDiagonal(); | 
|  | VERIFY_IS_APPROX(m2, refMat2); | 
|  | } | 
|  |  | 
|  | // test conservative resize | 
|  | { | 
|  | std::vector< std::pair<StorageIndex,StorageIndex> > inc; | 
|  | if(rows > 3 && cols > 2) | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(0,-1)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,0)); | 
|  | inc.push_back(std::pair<StorageIndex,StorageIndex>(-1,-1)); | 
|  |  | 
|  | for(size_t i = 0; i< inc.size(); i++) { | 
|  | StorageIndex incRows = inc[i].first; | 
|  | StorageIndex incCols = inc[i].second; | 
|  | SparseMatrixType m1(rows, cols); | 
|  | DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); | 
|  | initSparse<Scalar>(density, refMat1, m1); | 
|  |  | 
|  | SparseMatrixType m2 = m1; | 
|  | m2.makeCompressed(); | 
|  |  | 
|  | m1.conservativeResize(rows+incRows, cols+incCols); | 
|  | m2.conservativeResize(rows+incRows, cols+incCols); | 
|  | refMat1.conservativeResize(rows+incRows, cols+incCols); | 
|  | if (incRows > 0) refMat1.bottomRows(incRows).setZero(); | 
|  | if (incCols > 0) refMat1.rightCols(incCols).setZero(); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, refMat1); | 
|  | VERIFY_IS_APPROX(m2, refMat1); | 
|  |  | 
|  | // Insert new values | 
|  | if (incRows > 0) | 
|  | m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1; | 
|  | if (incCols > 0) | 
|  | m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1; | 
|  |  | 
|  | VERIFY_IS_APPROX(m1, refMat1); | 
|  |  | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | // test Identity matrix | 
|  | { | 
|  | DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows); | 
|  | SparseMatrixType m1(rows, rows); | 
|  | m1.setIdentity(); | 
|  | VERIFY_IS_APPROX(m1, refMat1); | 
|  | for(int k=0; k<rows*rows/4; ++k) | 
|  | { | 
|  | Index i = internal::random<Index>(0,rows-1); | 
|  | Index j = internal::random<Index>(0,rows-1); | 
|  | Scalar v = internal::random<Scalar>(); | 
|  | m1.coeffRef(i,j) = v; | 
|  | refMat1.coeffRef(i,j) = v; | 
|  | VERIFY_IS_APPROX(m1, refMat1); | 
|  | if(internal::random<Index>(0,10)<2) | 
|  | m1.makeCompressed(); | 
|  | } | 
|  | m1.setIdentity(); | 
|  | refMat1.setIdentity(); | 
|  | VERIFY_IS_APPROX(m1, refMat1); | 
|  | } | 
|  |  | 
|  | // test array/vector of InnerIterator | 
|  | { | 
|  | typedef typename SparseMatrixType::InnerIterator IteratorType; | 
|  |  | 
|  | DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); | 
|  | SparseMatrixType m2(rows, cols); | 
|  | initSparse<Scalar>(density, refMat2, m2); | 
|  | IteratorType static_array[2]; | 
|  | static_array[0] = IteratorType(m2,0); | 
|  | static_array[1] = IteratorType(m2,m2.outerSize()-1); | 
|  | VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 ); | 
|  | VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 ); | 
|  | if(static_array[0] && static_array[1]) | 
|  | { | 
|  | ++(static_array[1]); | 
|  | static_array[1] = IteratorType(m2,0); | 
|  | VERIFY( static_array[1] ); | 
|  | VERIFY( static_array[1].index() == static_array[0].index() ); | 
|  | VERIFY( static_array[1].outer() == static_array[0].outer() ); | 
|  | VERIFY( static_array[1].value() == static_array[0].value() ); | 
|  | } | 
|  |  | 
|  | std::vector<IteratorType> iters(2); | 
|  | iters[0] = IteratorType(m2,0); | 
|  | iters[1] = IteratorType(m2,m2.outerSize()-1); | 
|  | } | 
|  |  | 
|  | // test reserve with empty rows/columns | 
|  | { | 
|  | SparseMatrixType m1(0,cols); | 
|  | m1.reserve(ArrayXi::Constant(m1.outerSize(),1)); | 
|  | SparseMatrixType m2(rows,0); | 
|  | m2.reserve(ArrayXi::Constant(m2.outerSize(),1)); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename SparseMatrixType> | 
|  | void big_sparse_triplet(Index rows, Index cols, double density) { | 
|  | typedef typename SparseMatrixType::StorageIndex StorageIndex; | 
|  | typedef typename SparseMatrixType::Scalar Scalar; | 
|  | typedef Triplet<Scalar,Index> TripletType; | 
|  | std::vector<TripletType> triplets; | 
|  | double nelements = density * rows*cols; | 
|  | VERIFY(nelements>=0 && nelements <  NumTraits<StorageIndex>::highest()); | 
|  | Index ntriplets = Index(nelements); | 
|  | triplets.reserve(ntriplets); | 
|  | Scalar sum = Scalar(0); | 
|  | for(Index i=0;i<ntriplets;++i) | 
|  | { | 
|  | Index r = internal::random<Index>(0,rows-1); | 
|  | Index c = internal::random<Index>(0,cols-1); | 
|  | // use positive values to prevent numerical cancellation errors in sum | 
|  | Scalar v = numext::abs(internal::random<Scalar>()); | 
|  | triplets.push_back(TripletType(r,c,v)); | 
|  | sum += v; | 
|  | } | 
|  | SparseMatrixType m(rows,cols); | 
|  | m.setFromTriplets(triplets.begin(), triplets.end()); | 
|  | VERIFY(m.nonZeros() <= ntriplets); | 
|  | VERIFY_IS_APPROX(sum, m.sum()); | 
|  | } | 
|  |  | 
|  | template<int> | 
|  | void bug1105() | 
|  | { | 
|  | // Regression test for bug 1105 | 
|  | int n = Eigen::internal::random<int>(200,600); | 
|  | SparseMatrix<std::complex<double>,0, long> mat(n, n); | 
|  | std::complex<double> val; | 
|  |  | 
|  | for(int i=0; i<n; ++i) | 
|  | { | 
|  | mat.coeffRef(i, i%(n/10)) = val; | 
|  | VERIFY(mat.data().allocatedSize()<20*n); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_SPARSE_TEST_INCLUDED_FROM_SPARSE_EXTRA | 
|  |  | 
|  | EIGEN_DECLARE_TEST(sparse_basic) | 
|  | { | 
|  | g_dense_op_sparse_count = 0;  // Suppresses compiler warning. | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); | 
|  | if(Eigen::internal::random<int>(0,4) == 0) { | 
|  | r = c; // check square matrices in 25% of tries | 
|  | } | 
|  | EIGEN_UNUSED_VARIABLE(r+c); | 
|  | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) )); | 
|  | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); | 
|  | CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); | 
|  | CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); | 
|  | CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) )); | 
|  | CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) )); | 
|  | CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) )); | 
|  |  | 
|  | r = Eigen::internal::random<int>(1,100); | 
|  | c = Eigen::internal::random<int>(1,100); | 
|  | if(Eigen::internal::random<int>(0,4) == 0) { | 
|  | r = c; // check square matrices in 25% of tries | 
|  | } | 
|  |  | 
|  | CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); | 
|  | CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); | 
|  | } | 
|  |  | 
|  | // Regression test for bug 900: (manually insert higher values here, if you have enough RAM): | 
|  | CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125))); | 
|  | CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125))); | 
|  |  | 
|  | CALL_SUBTEST_7( bug1105<0>() ); | 
|  | } | 
|  | #endif |