|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "sparse.h" | 
|  |  | 
|  | template<typename Scalar,typename StorageIndex> void sparse_vector(int rows, int cols) | 
|  | { | 
|  | double densityMat = (std::max)(8./(rows*cols), 0.01); | 
|  | double densityVec = (std::max)(8./(rows), 0.1); | 
|  | typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; | 
|  | typedef Matrix<Scalar,Dynamic,1> DenseVector; | 
|  | typedef SparseVector<Scalar,0,StorageIndex> SparseVectorType; | 
|  | typedef SparseMatrix<Scalar,0,StorageIndex> SparseMatrixType; | 
|  | Scalar eps = 1e-6; | 
|  |  | 
|  | SparseMatrixType m1(rows,rows); | 
|  | SparseVectorType v1(rows), v2(rows), v3(rows); | 
|  | DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); | 
|  | DenseVector refV1 = DenseVector::Random(rows), | 
|  | refV2 = DenseVector::Random(rows), | 
|  | refV3 = DenseVector::Random(rows); | 
|  |  | 
|  | std::vector<int> zerocoords, nonzerocoords; | 
|  | initSparse<Scalar>(densityVec, refV1, v1, &zerocoords, &nonzerocoords); | 
|  | initSparse<Scalar>(densityMat, refM1, m1); | 
|  |  | 
|  | initSparse<Scalar>(densityVec, refV2, v2); | 
|  | initSparse<Scalar>(densityVec, refV3, v3); | 
|  |  | 
|  | Scalar s1 = internal::random<Scalar>(); | 
|  |  | 
|  | // test coeff and coeffRef | 
|  | for (unsigned int i=0; i<zerocoords.size(); ++i) | 
|  | { | 
|  | VERIFY_IS_MUCH_SMALLER_THAN( v1.coeff(zerocoords[i]), eps ); | 
|  | //VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); | 
|  | } | 
|  | { | 
|  | VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); | 
|  | int j=0; | 
|  | for (typename SparseVectorType::InnerIterator it(v1); it; ++it,++j) | 
|  | { | 
|  | VERIFY(nonzerocoords[j]==it.index()); | 
|  | VERIFY(it.value()==v1.coeff(it.index())); | 
|  | VERIFY(it.value()==refV1.coeff(it.index())); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(v1, refV1); | 
|  |  | 
|  | // test coeffRef with reallocation | 
|  | { | 
|  | SparseVectorType v4(rows); | 
|  | DenseVector v5 = DenseVector::Zero(rows); | 
|  | for(int k=0; k<rows; ++k) | 
|  | { | 
|  | int i = internal::random<int>(0,rows-1); | 
|  | Scalar v = internal::random<Scalar>(); | 
|  | v4.coeffRef(i) += v; | 
|  | v5.coeffRef(i) += v; | 
|  | } | 
|  | VERIFY_IS_APPROX(v4,v5); | 
|  | } | 
|  |  | 
|  | v1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
|  | refV1.coeffRef(nonzerocoords[0]) = Scalar(5); | 
|  | VERIFY_IS_APPROX(v1, refV1); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1+v2, refV1+refV2); | 
|  | VERIFY_IS_APPROX(v1+v2+v3, refV1+refV2+refV3); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1*s1-v2, refV1*s1-refV2); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1*=s1, refV1*=s1); | 
|  | VERIFY_IS_APPROX(v1/=s1, refV1/=s1); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1+=v2, refV1+=refV2); | 
|  | VERIFY_IS_APPROX(v1-=v2, refV1-=refV2); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); | 
|  | VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); | 
|  |  | 
|  | VERIFY_IS_APPROX(m1*v2, refM1*refV2); | 
|  | VERIFY_IS_APPROX(v1.dot(m1*v2), refV1.dot(refM1*refV2)); | 
|  | { | 
|  | int i = internal::random<int>(0,rows-1); | 
|  | VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); | 
|  | } | 
|  |  | 
|  |  | 
|  | VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); | 
|  |  | 
|  | VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); | 
|  |  | 
|  | // test aliasing | 
|  | VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); | 
|  | VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); | 
|  | VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); | 
|  |  | 
|  | // sparse matrix to sparse vector | 
|  | SparseMatrixType mv1; | 
|  | VERIFY_IS_APPROX((mv1=v1),v1); | 
|  | VERIFY_IS_APPROX(mv1,(v1=mv1)); | 
|  | VERIFY_IS_APPROX(mv1,(v1=mv1.transpose())); | 
|  |  | 
|  | // check copy to dense vector with transpose | 
|  | refV3.resize(0); | 
|  | VERIFY_IS_APPROX(refV3 = v1.transpose(),v1.toDense()); | 
|  | VERIFY_IS_APPROX(DenseVector(v1),v1.toDense()); | 
|  |  | 
|  | // test conservative resize | 
|  | { | 
|  | std::vector<StorageIndex> inc; | 
|  | if(rows > 3) | 
|  | inc.push_back(-3); | 
|  | inc.push_back(0); | 
|  | inc.push_back(3); | 
|  | inc.push_back(1); | 
|  | inc.push_back(10); | 
|  |  | 
|  | for(std::size_t i = 0; i< inc.size(); i++) { | 
|  | StorageIndex incRows = inc[i]; | 
|  | SparseVectorType vec1(rows); | 
|  | DenseVector refVec1 = DenseVector::Zero(rows); | 
|  | initSparse<Scalar>(densityVec, refVec1, vec1); | 
|  |  | 
|  | vec1.conservativeResize(rows+incRows); | 
|  | refVec1.conservativeResize(rows+incRows); | 
|  | if (incRows > 0) refVec1.tail(incRows).setZero(); | 
|  |  | 
|  | VERIFY_IS_APPROX(vec1, refVec1); | 
|  |  | 
|  | // Insert new values | 
|  | if (incRows > 0) | 
|  | vec1.insert(vec1.rows()-1) = refVec1(refVec1.rows()-1) = 1; | 
|  |  | 
|  | VERIFY_IS_APPROX(vec1, refVec1); | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | EIGEN_DECLARE_TEST(sparse_vector) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | int r = Eigen::internal::random<int>(1,500), c = Eigen::internal::random<int>(1,500); | 
|  | if(Eigen::internal::random<int>(0,4) == 0) { | 
|  | r = c; // check square matrices in 25% of tries | 
|  | } | 
|  | EIGEN_UNUSED_VARIABLE(r+c); | 
|  |  | 
|  | CALL_SUBTEST_1(( sparse_vector<double,int>(8, 8) )); | 
|  | CALL_SUBTEST_2(( sparse_vector<std::complex<double>, int>(r, c) )); | 
|  | CALL_SUBTEST_1(( sparse_vector<double,long int>(r, c) )); | 
|  | CALL_SUBTEST_1(( sparse_vector<double,short>(r, c) )); | 
|  | } | 
|  | } | 
|  |  |