|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2018-2019 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include <iterator> | 
|  | #include <numeric> | 
|  | #include "main.h" | 
|  |  | 
|  | template< class Iterator > | 
|  | std::reverse_iterator<Iterator> | 
|  | make_reverse_iterator( Iterator i ) | 
|  | { | 
|  | return std::reverse_iterator<Iterator>(i); | 
|  | } | 
|  |  | 
|  | #if !EIGEN_HAS_CXX11 | 
|  | template<class ForwardIt> | 
|  | ForwardIt is_sorted_until(ForwardIt firstIt, ForwardIt lastIt) | 
|  | { | 
|  | if (firstIt != lastIt) { | 
|  | ForwardIt next = firstIt; | 
|  | while (++next != lastIt) { | 
|  | if (*next < *firstIt) | 
|  | return next; | 
|  | firstIt = next; | 
|  | } | 
|  | } | 
|  | return lastIt; | 
|  | } | 
|  | template<class ForwardIt> | 
|  | bool is_sorted(ForwardIt firstIt, ForwardIt lastIt) | 
|  | { | 
|  | return ::is_sorted_until(firstIt, lastIt) == lastIt; | 
|  | } | 
|  | #else | 
|  | using std::is_sorted; | 
|  | #endif | 
|  |  | 
|  | template<typename XprType> | 
|  | bool is_pointer_based_stl_iterator(const internal::pointer_based_stl_iterator<XprType> &) { return true; } | 
|  |  | 
|  | template<typename XprType> | 
|  | bool is_generic_randaccess_stl_iterator(const internal::generic_randaccess_stl_iterator<XprType> &) { return true; } | 
|  |  | 
|  | template<typename Xpr> | 
|  | void check_begin_end_for_loop(Xpr xpr) | 
|  | { | 
|  | const Xpr& cxpr(xpr); | 
|  | Index i = 0; | 
|  |  | 
|  | i = 0; | 
|  | for(typename Xpr::iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } | 
|  |  | 
|  | i = 0; | 
|  | for(typename Xpr::const_iterator it = xpr.cbegin(); it!=xpr.cend(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } | 
|  |  | 
|  | i = 0; | 
|  | for(typename Xpr::const_iterator it = cxpr.begin(); it!=cxpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } | 
|  |  | 
|  | i = 0; | 
|  | for(typename Xpr::const_iterator it = xpr.begin(); it!=xpr.end(); ++it) { VERIFY_IS_EQUAL(*it,xpr[i++]); } | 
|  |  | 
|  | { | 
|  | // simple API check | 
|  | typename Xpr::const_iterator cit = xpr.begin(); | 
|  | cit = xpr.cbegin(); | 
|  |  | 
|  | #if EIGEN_HAS_CXX11 | 
|  | auto tmp1 = xpr.begin(); | 
|  | VERIFY(tmp1==xpr.begin()); | 
|  | auto tmp2 = xpr.cbegin(); | 
|  | VERIFY(tmp2==xpr.cbegin()); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | VERIFY( xpr.end() -xpr.begin()  == xpr.size() ); | 
|  | VERIFY( xpr.cend()-xpr.begin()  == xpr.size() ); | 
|  | VERIFY( xpr.end() -xpr.cbegin() == xpr.size() ); | 
|  | VERIFY( xpr.cend()-xpr.cbegin() == xpr.size() ); | 
|  |  | 
|  | if(xpr.size()>0) { | 
|  | VERIFY(xpr.begin() != xpr.end()); | 
|  | VERIFY(xpr.begin() < xpr.end()); | 
|  | VERIFY(xpr.begin() <= xpr.end()); | 
|  | VERIFY(!(xpr.begin() == xpr.end())); | 
|  | VERIFY(!(xpr.begin() > xpr.end())); | 
|  | VERIFY(!(xpr.begin() >= xpr.end())); | 
|  |  | 
|  | VERIFY(xpr.cbegin() != xpr.end()); | 
|  | VERIFY(xpr.cbegin() < xpr.end()); | 
|  | VERIFY(xpr.cbegin() <= xpr.end()); | 
|  | VERIFY(!(xpr.cbegin() == xpr.end())); | 
|  | VERIFY(!(xpr.cbegin() > xpr.end())); | 
|  | VERIFY(!(xpr.cbegin() >= xpr.end())); | 
|  |  | 
|  | VERIFY(xpr.begin() != xpr.cend()); | 
|  | VERIFY(xpr.begin() < xpr.cend()); | 
|  | VERIFY(xpr.begin() <= xpr.cend()); | 
|  | VERIFY(!(xpr.begin() == xpr.cend())); | 
|  | VERIFY(!(xpr.begin() > xpr.cend())); | 
|  | VERIFY(!(xpr.begin() >= xpr.cend())); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Rows, int Cols> | 
|  | void test_stl_iterators(int rows=Rows, int cols=Cols) | 
|  | { | 
|  | typedef Matrix<Scalar,Rows,1> VectorType; | 
|  | #if EIGEN_HAS_CXX11 | 
|  | typedef Matrix<Scalar,1,Cols> RowVectorType; | 
|  | #endif | 
|  | typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType; | 
|  | typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType; | 
|  | VectorType v = VectorType::Random(rows); | 
|  | const VectorType& cv(v); | 
|  | ColMatrixType A = ColMatrixType::Random(rows,cols); | 
|  | const ColMatrixType& cA(A); | 
|  | RowMatrixType B = RowMatrixType::Random(rows,cols); | 
|  |  | 
|  | Index i, j; | 
|  |  | 
|  | // Check we got a fast pointer-based iterator when expected | 
|  | { | 
|  | VERIFY( is_pointer_based_stl_iterator(v.begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(v.end()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cv.begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cv.end()) ); | 
|  |  | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | VERIFY( is_pointer_based_stl_iterator(A.col(j).begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(A.col(j).end()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.col(j).begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.col(j).end()) ); | 
|  |  | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | VERIFY( is_pointer_based_stl_iterator(A.row(i).begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(A.row(i).end()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.row(i).begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.row(i).end()) ); | 
|  |  | 
|  | VERIFY( is_pointer_based_stl_iterator(A.reshaped().begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(A.reshaped().end()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.reshaped().begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(cA.reshaped().end()) ); | 
|  |  | 
|  | VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().begin()) ); | 
|  | VERIFY( is_pointer_based_stl_iterator(B.template reshaped<AutoOrder>().end()) ); | 
|  |  | 
|  | VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().begin()) ); | 
|  | VERIFY( is_generic_randaccess_stl_iterator(A.template reshaped<RowMajor>().end()) ); | 
|  | } | 
|  |  | 
|  | { | 
|  | check_begin_end_for_loop(v); | 
|  | check_begin_end_for_loop(A.col(internal::random<Index>(0,A.cols()-1))); | 
|  | check_begin_end_for_loop(A.row(internal::random<Index>(0,A.rows()-1))); | 
|  | check_begin_end_for_loop(v+v); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11 | 
|  | // check swappable | 
|  | { | 
|  | using std::swap; | 
|  | // pointer-based | 
|  | { | 
|  | VectorType v_copy = v; | 
|  | auto a = v.begin(); | 
|  | auto b = v.end()-1; | 
|  | swap(a,b); | 
|  | VERIFY_IS_EQUAL(v,v_copy); | 
|  | VERIFY_IS_EQUAL(*b,*v.begin()); | 
|  | VERIFY_IS_EQUAL(*b,v(0)); | 
|  | VERIFY_IS_EQUAL(*a,v.end()[-1]); | 
|  | VERIFY_IS_EQUAL(*a,v(last)); | 
|  | } | 
|  |  | 
|  | // generic | 
|  | { | 
|  | RowMatrixType B_copy = B; | 
|  | auto Br = B.reshaped(); | 
|  | auto a = Br.begin(); | 
|  | auto b = Br.end()-1; | 
|  | swap(a,b); | 
|  | VERIFY_IS_EQUAL(B,B_copy); | 
|  | VERIFY_IS_EQUAL(*b,*Br.begin()); | 
|  | VERIFY_IS_EQUAL(*b,Br(0)); | 
|  | VERIFY_IS_EQUAL(*a,Br.end()[-1]); | 
|  | VERIFY_IS_EQUAL(*a,Br(last)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check non-const iterator with for-range loops | 
|  | { | 
|  | i = 0; | 
|  | for(auto x : v) { VERIFY_IS_EQUAL(x,v[i++]); } | 
|  |  | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | i = 0; | 
|  | for(auto x : A.col(j)) { VERIFY_IS_EQUAL(x,A(i++,j)); } | 
|  |  | 
|  | i = 0; | 
|  | for(auto x : (v+A.col(j))) { VERIFY_IS_APPROX(x,v(i)+A(i,j)); ++i; } | 
|  |  | 
|  | j = 0; | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | for(auto x : A.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } | 
|  |  | 
|  | i = 0; | 
|  | for(auto x : A.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } | 
|  | } | 
|  |  | 
|  | // same for const_iterator | 
|  | { | 
|  | i = 0; | 
|  | for(auto x : cv) { VERIFY_IS_EQUAL(x,v[i++]); } | 
|  |  | 
|  | i = 0; | 
|  | for(auto x : cA.reshaped()) { VERIFY_IS_EQUAL(x,A(i++)); } | 
|  |  | 
|  | j = 0; | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | for(auto x : cA.row(i)) { VERIFY_IS_EQUAL(x,A(i,j++)); } | 
|  | } | 
|  |  | 
|  | // check reshaped() on row-major | 
|  | { | 
|  | i = 0; | 
|  | Matrix<Scalar,Dynamic,Dynamic,ColMajor> Bc = B; | 
|  | for(auto x : B.reshaped()) { VERIFY_IS_EQUAL(x,Bc(i++)); } | 
|  | } | 
|  |  | 
|  | // check write access | 
|  | { | 
|  | VectorType w(v.size()); | 
|  | i = 0; | 
|  | for(auto& x : w) { x = v(i++); } | 
|  | VERIFY_IS_EQUAL(v,w); | 
|  | } | 
|  |  | 
|  | // check for dangling pointers | 
|  | { | 
|  | // no dangling because pointer-based | 
|  | { | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | auto it = A.col(j).begin(); | 
|  | for(i=0;i<rows;++i) { | 
|  | VERIFY_IS_EQUAL(it[i],A(i,j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // no dangling because pointer-based | 
|  | { | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | auto it = A.row(i).begin(); | 
|  | for(j=0;j<cols;++j) { VERIFY_IS_EQUAL(it[j],A(i,j)); } | 
|  | } | 
|  |  | 
|  | { | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | // this would produce a dangling pointer: | 
|  | // auto it = (A+2*A).col(j).begin(); | 
|  | // we need to name the temporary expression: | 
|  | auto tmp = (A+2*A).col(j); | 
|  | auto it = tmp.begin(); | 
|  | for(i=0;i<rows;++i) { | 
|  | VERIFY_IS_APPROX(it[i],3*A(i,j)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | { | 
|  | // check basic for loop on vector-wise iterators | 
|  | j=0; | 
|  | for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { | 
|  | VERIFY_IS_APPROX( it->coeff(0), A(0,j) ); | 
|  | VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); | 
|  | } | 
|  | j=0; | 
|  | for (auto it = A.colwise().begin(); it != A.colwise().end(); ++it, ++j) { | 
|  | (*it).coeffRef(0) = (*it).coeff(0); // compilation check | 
|  | it->coeffRef(0) = it->coeff(0);     // compilation check | 
|  | VERIFY_IS_APPROX( it->coeff(0), A(0,j) ); | 
|  | VERIFY_IS_APPROX( (*it).coeff(0), A(0,j) ); | 
|  | } | 
|  |  | 
|  | // check valuetype gives us a copy | 
|  | j=0; | 
|  | for (auto it = A.colwise().cbegin(); it != A.colwise().cend(); ++it, ++j) { | 
|  | typename decltype(it)::value_type tmp = *it; | 
|  | VERIFY_IS_NOT_EQUAL( tmp.data() , it->data() ); | 
|  | VERIFY_IS_APPROX( tmp, A.col(j) ); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | if(rows>=3) { | 
|  | VERIFY_IS_EQUAL((v.begin()+rows/2)[1], v(rows/2+1)); | 
|  |  | 
|  | VERIFY_IS_EQUAL((A.rowwise().begin()+rows/2)[1], A.row(rows/2+1)); | 
|  | } | 
|  |  | 
|  | if(cols>=3) { | 
|  | VERIFY_IS_EQUAL((A.colwise().begin()+cols/2)[1], A.col(cols/2+1)); | 
|  | } | 
|  |  | 
|  | // check std::sort | 
|  | { | 
|  | // first check that is_sorted returns false when required | 
|  | if(rows>=2) | 
|  | { | 
|  | v(1) = v(0)-Scalar(1); | 
|  | #if EIGEN_HAS_CXX11 | 
|  | VERIFY(!is_sorted(std::begin(v),std::end(v))); | 
|  | #else | 
|  | VERIFY(!is_sorted(v.cbegin(),v.cend())); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // on a vector | 
|  | { | 
|  | std::sort(v.begin(),v.end()); | 
|  | VERIFY(is_sorted(v.begin(),v.end())); | 
|  | VERIFY(!::is_sorted(make_reverse_iterator(v.end()),make_reverse_iterator(v.begin()))); | 
|  | } | 
|  |  | 
|  | // on a column of a column-major matrix -> pointer-based iterator and default increment | 
|  | { | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | // std::sort(begin(A.col(j)),end(A.col(j))); // does not compile because this returns const iterators | 
|  | typename ColMatrixType::ColXpr Acol = A.col(j); | 
|  | std::sort(Acol.begin(),Acol.end()); | 
|  | VERIFY(is_sorted(Acol.cbegin(),Acol.cend())); | 
|  | A.setRandom(); | 
|  |  | 
|  | std::sort(A.col(j).begin(),A.col(j).end()); | 
|  | VERIFY(is_sorted(A.col(j).cbegin(),A.col(j).cend())); | 
|  | A.setRandom(); | 
|  | } | 
|  |  | 
|  | // on a row of a rowmajor matrix -> pointer-based iterator and runtime increment | 
|  | { | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | typename ColMatrixType::RowXpr Arow = A.row(i); | 
|  | VERIFY_IS_EQUAL( std::distance(Arow.begin(),Arow.end()), cols); | 
|  | std::sort(Arow.begin(),Arow.end()); | 
|  | VERIFY(is_sorted(Arow.cbegin(),Arow.cend())); | 
|  | A.setRandom(); | 
|  |  | 
|  | std::sort(A.row(i).begin(),A.row(i).end()); | 
|  | VERIFY(is_sorted(A.row(i).cbegin(),A.row(i).cend())); | 
|  | A.setRandom(); | 
|  | } | 
|  |  | 
|  | // with a generic iterator | 
|  | { | 
|  | Reshaped<RowMatrixType,RowMatrixType::SizeAtCompileTime,1> B1 = B.reshaped(); | 
|  | std::sort(B1.begin(),B1.end()); | 
|  | VERIFY(is_sorted(B1.cbegin(),B1.cend())); | 
|  | B.setRandom(); | 
|  |  | 
|  | // assertion because nested expressions are different | 
|  | // std::sort(B.reshaped().begin(),B.reshaped().end()); | 
|  | // VERIFY(is_sorted(B.reshaped().cbegin(),B.reshaped().cend())); | 
|  | // B.setRandom(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // check with partial_sum | 
|  | { | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | typename ColMatrixType::ColXpr Acol = A.col(j); | 
|  | std::partial_sum(Acol.begin(), Acol.end(), v.begin()); | 
|  | VERIFY_IS_APPROX(v(seq(1,last)), v(seq(0,last-1))+Acol(seq(1,last))); | 
|  |  | 
|  | // inplace | 
|  | std::partial_sum(Acol.begin(), Acol.end(), Acol.begin()); | 
|  | VERIFY_IS_APPROX(v, Acol); | 
|  | } | 
|  |  | 
|  | // stress random access as required by std::nth_element | 
|  | if(rows>=3) | 
|  | { | 
|  | v.setRandom(); | 
|  | VectorType v1 = v; | 
|  | std::sort(v1.begin(),v1.end()); | 
|  | std::nth_element(v.begin(), v.begin()+rows/2, v.end()); | 
|  | VERIFY_IS_APPROX(v1(rows/2), v(rows/2)); | 
|  |  | 
|  | v.setRandom(); | 
|  | v1 = v; | 
|  | std::sort(v1.begin()+rows/2,v1.end()); | 
|  | std::nth_element(v.begin()+rows/2, v.begin()+rows/4, v.end()); | 
|  | VERIFY_IS_APPROX(v1(rows/4), v(rows/4)); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11 | 
|  | // check rows/cols iterators with range-for loops | 
|  | { | 
|  | j = 0; | 
|  | for(auto c : A.colwise()) { VERIFY_IS_APPROX(c.sum(), A.col(j).sum()); ++j; } | 
|  | j = 0; | 
|  | for(auto c : B.colwise()) { VERIFY_IS_APPROX(c.sum(), B.col(j).sum()); ++j; } | 
|  |  | 
|  | j = 0; | 
|  | for(auto c : B.colwise()) { | 
|  | i = 0; | 
|  | for(auto& x : c) { | 
|  | VERIFY_IS_EQUAL(x, B(i,j)); | 
|  | x = A(i,j); | 
|  | ++i; | 
|  | } | 
|  | ++j; | 
|  | } | 
|  | VERIFY_IS_APPROX(A,B); | 
|  | B.setRandom(); | 
|  |  | 
|  | i = 0; | 
|  | for(auto r : A.rowwise()) { VERIFY_IS_APPROX(r.sum(), A.row(i).sum()); ++i; } | 
|  | i = 0; | 
|  | for(auto r : B.rowwise()) { VERIFY_IS_APPROX(r.sum(), B.row(i).sum()); ++i; } | 
|  | } | 
|  |  | 
|  |  | 
|  | // check rows/cols iterators with STL algorithms | 
|  | { | 
|  | RowVectorType row = RowVectorType::Random(cols); | 
|  | A.rowwise() = row; | 
|  | VERIFY( std::all_of(A.rowwise().begin(),  A.rowwise().end(),  [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); | 
|  | VERIFY( std::all_of(A.rowwise().rbegin(), A.rowwise().rend(), [&row](typename ColMatrixType::RowXpr x) { return internal::isApprox(x.squaredNorm(),row.squaredNorm()); }) ); | 
|  |  | 
|  | VectorType col = VectorType::Random(rows); | 
|  | A.colwise() = col; | 
|  | VERIFY( std::all_of(A.colwise().begin(),   A.colwise().end(),   [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); | 
|  | VERIFY( std::all_of(A.colwise().rbegin(),  A.colwise().rend(),  [&col](typename ColMatrixType::ColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); | 
|  | VERIFY( std::all_of(A.colwise().cbegin(),  A.colwise().cend(),  [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); | 
|  | VERIFY( std::all_of(A.colwise().crbegin(), A.colwise().crend(), [&col](typename ColMatrixType::ConstColXpr x) { return internal::isApprox(x.squaredNorm(),col.squaredNorm()); }) ); | 
|  |  | 
|  | i = internal::random<Index>(0,A.rows()-1); | 
|  | A.setRandom(); | 
|  | A.row(i).setZero(); | 
|  | VERIFY_IS_EQUAL( std::find_if(A.rowwise().begin(),  A.rowwise().end(),  [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().begin(),  i ); | 
|  | VERIFY_IS_EQUAL( std::find_if(A.rowwise().rbegin(), A.rowwise().rend(), [](typename ColMatrixType::RowXpr x) { return x.squaredNorm() == Scalar(0); })-A.rowwise().rbegin(), (A.rows()-1) - i ); | 
|  |  | 
|  | j = internal::random<Index>(0,A.cols()-1); | 
|  | A.setRandom(); | 
|  | A.col(j).setZero(); | 
|  | VERIFY_IS_EQUAL( std::find_if(A.colwise().begin(),  A.colwise().end(),  [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().begin(),  j ); | 
|  | VERIFY_IS_EQUAL( std::find_if(A.colwise().rbegin(), A.colwise().rend(), [](typename ColMatrixType::ColXpr x) { return x.squaredNorm() == Scalar(0); })-A.colwise().rbegin(), (A.cols()-1) - j ); | 
|  | } | 
|  |  | 
|  | { | 
|  | using VecOp = VectorwiseOp<ArrayXXi, 0>; | 
|  | STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cbegin())>::value )); | 
|  | STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::declval<const VecOp&>().cend  ())>::value )); | 
|  | #if EIGEN_COMP_CXXVER>=14 | 
|  | STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cbegin(std::declval<const VecOp&>()))>::value )); | 
|  | STATIC_CHECK(( internal::is_same<VecOp::const_iterator, decltype(std::cend  (std::declval<const VecOp&>()))>::value )); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | #if EIGEN_HAS_CXX11 | 
|  | // When the compiler sees expression IsContainerTest<C>(0), if C is an | 
|  | // STL-style container class, the first overload of IsContainerTest | 
|  | // will be viable (since both C::iterator* and C::const_iterator* are | 
|  | // valid types and NULL can be implicitly converted to them).  It will | 
|  | // be picked over the second overload as 'int' is a perfect match for | 
|  | // the type of argument 0.  If C::iterator or C::const_iterator is not | 
|  | // a valid type, the first overload is not viable, and the second | 
|  | // overload will be picked. | 
|  | template <class C, | 
|  | class Iterator = decltype(::std::declval<const C&>().begin()), | 
|  | class = decltype(::std::declval<const C&>().end()), | 
|  | class = decltype(++::std::declval<Iterator&>()), | 
|  | class = decltype(*::std::declval<Iterator>()), | 
|  | class = typename C::const_iterator> | 
|  | bool IsContainerType(int /* dummy */) { return true; } | 
|  |  | 
|  | template <class C> | 
|  | bool IsContainerType(long /* dummy */) { return false; } | 
|  |  | 
|  | template <typename Scalar, int Rows, int Cols> | 
|  | void test_stl_container_detection(int rows=Rows, int cols=Cols) | 
|  | { | 
|  | typedef Matrix<Scalar,Rows,1> VectorType; | 
|  | typedef Matrix<Scalar,Rows,Cols,ColMajor> ColMatrixType; | 
|  | typedef Matrix<Scalar,Rows,Cols,RowMajor> RowMatrixType; | 
|  |  | 
|  | ColMatrixType A = ColMatrixType::Random(rows, cols); | 
|  | RowMatrixType B = RowMatrixType::Random(rows, cols); | 
|  |  | 
|  | Index i = 1; | 
|  |  | 
|  | using ColMatrixColType = decltype(A.col(i)); | 
|  | using ColMatrixRowType = decltype(A.row(i)); | 
|  | using RowMatrixColType = decltype(B.col(i)); | 
|  | using RowMatrixRowType = decltype(B.row(i)); | 
|  |  | 
|  | // Vector and matrix col/row are valid Stl-style container. | 
|  | VERIFY_IS_EQUAL(IsContainerType<VectorType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixColType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixRowType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixColType>(0), true); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixRowType>(0), true); | 
|  |  | 
|  | // But the matrix itself is not a valid Stl-style container. | 
|  | VERIFY_IS_EQUAL(IsContainerType<ColMatrixType>(0), rows == 1 || cols == 1); | 
|  | VERIFY_IS_EQUAL(IsContainerType<RowMatrixType>(0), rows == 1 || cols == 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | EIGEN_DECLARE_TEST(stl_iterators) | 
|  | { | 
|  | for(int i = 0; i < g_repeat; i++) { | 
|  | CALL_SUBTEST_1(( test_stl_iterators<double,2,3>() )); | 
|  | CALL_SUBTEST_1(( test_stl_iterators<float,7,5>() )); | 
|  | CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(5,10), internal::random<int>(5,10)) )); | 
|  | CALL_SUBTEST_1(( test_stl_iterators<int,Dynamic,Dynamic>(internal::random<int>(10,200), internal::random<int>(10,200)) )); | 
|  | } | 
|  |  | 
|  | #if EIGEN_HAS_CXX11 | 
|  | CALL_SUBTEST_1(( test_stl_container_detection<float,1,1>() )); | 
|  | CALL_SUBTEST_1(( test_stl_container_detection<float,5,5>() )); | 
|  | #endif | 
|  | } |