| |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.005 -DSIZE=10000 && ./a.out |
| //g++ -O3 -g0 -DNDEBUG sparse_product.cpp -I.. -I/home/gael/Coding/LinearAlgebra/mtl4/ -DDENSITY=0.05 -DSIZE=2000 && ./a.out |
| // -DNOGMM -DNOMTL |
| // -I /home/gael/Coding/LinearAlgebra/CSparse/Include/ /home/gael/Coding/LinearAlgebra/CSparse/Lib/libcsparse.a |
| |
| #ifndef SIZE |
| #define SIZE 10000 |
| #endif |
| |
| #ifndef DENSITY |
| #define DENSITY 0.01 |
| #endif |
| |
| #ifndef REPEAT |
| #define REPEAT 1 |
| #endif |
| |
| #include "BenchSparseUtil.h" |
| |
| #ifndef MINDENSITY |
| #define MINDENSITY 0.0004 |
| #endif |
| |
| #ifndef NBTRIES |
| #define NBTRIES 10 |
| #endif |
| |
| #define BENCH(X) \ |
| timer.reset(); \ |
| for (int _j=0; _j<NBTRIES; ++_j) { \ |
| timer.start(); \ |
| for (int _k=0; _k<REPEAT; ++_k) { \ |
| X \ |
| } timer.stop(); } |
| |
| typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix; |
| typedef SparseMatrix<Scalar,RowMajorBit|UpperTriangular> EigenSparseTriMatrixRow; |
| |
| void fillMatrix(float density, int rows, int cols, EigenSparseTriMatrix& dst) |
| { |
| dst.startFill(rows*cols*density); |
| for(int j = 0; j < cols; j++) |
| { |
| for(int i = 0; i < j; i++) |
| { |
| Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0; |
| if (v!=0) |
| dst.fill(i,j) = v; |
| } |
| dst.fill(j,j) = internal::random<Scalar>(); |
| } |
| dst.endFill(); |
| } |
| |
| int main(int argc, char *argv[]) |
| { |
| int rows = SIZE; |
| int cols = SIZE; |
| float density = DENSITY; |
| BenchTimer timer; |
| #if 1 |
| EigenSparseTriMatrix sm1(rows,cols); |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector x = DenseVector::Random(cols); |
| |
| bool densedone = false; |
| |
| for (float density = DENSITY; density>=MINDENSITY; density*=0.5) |
| { |
| EigenSparseTriMatrix sm1(rows, cols); |
| fillMatrix(density, rows, cols, sm1); |
| |
| // dense matrices |
| #ifdef DENSEMATRIX |
| if (!densedone) |
| { |
| densedone = true; |
| std::cout << "Eigen Dense\t" << density*100 << "%\n"; |
| DenseMatrix m1(rows,cols); |
| Matrix<Scalar,Dynamic,Dynamic,Dynamic,Dynamic,RowMajorBit> m2(rows,cols); |
| eiToDense(sm1, m1); |
| m2 = m1; |
| |
| BENCH(x = m1.marked<UpperTriangular>().solveTriangular(b);) |
| std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x.transpose() << "\n"; |
| |
| BENCH(x = m2.marked<UpperTriangular>().solveTriangular(b);) |
| std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x.transpose() << "\n"; |
| } |
| #endif |
| |
| // eigen sparse matrices |
| { |
| std::cout << "Eigen sparse\t" << density*100 << "%\n"; |
| EigenSparseTriMatrixRow sm2 = sm1; |
| |
| BENCH(x = sm1.solveTriangular(b);) |
| std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x.transpose() << "\n"; |
| |
| BENCH(x = sm2.solveTriangular(b);) |
| std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x.transpose() << "\n"; |
| |
| // x = b; |
| // BENCH(sm1.inverseProductInPlace(x);) |
| // std::cout << " colmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; |
| // std::cerr << x.transpose() << "\n"; |
| // |
| // x = b; |
| // BENCH(sm2.inverseProductInPlace(x);) |
| // std::cout << " rowmajor^-1 * b:\t" << timer.value() << " (inplace)" << endl; |
| // std::cerr << x.transpose() << "\n"; |
| } |
| |
| |
| |
| // CSparse |
| #ifdef CSPARSE |
| { |
| std::cout << "CSparse \t" << density*100 << "%\n"; |
| cs *m1; |
| eiToCSparse(sm1, m1); |
| |
| BENCH(x = b; if (!cs_lsolve (m1, x.data())){std::cerr << "cs_lsolve failed\n"; break;}; ) |
| std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; |
| } |
| #endif |
| |
| // GMM++ |
| #ifndef NOGMM |
| { |
| std::cout << "GMM++ sparse\t" << density*100 << "%\n"; |
| GmmSparse m1(rows,cols); |
| gmm::csr_matrix<Scalar> m2; |
| eiToGmm(sm1, m1); |
| gmm::copy(m1,m2); |
| std::vector<Scalar> gmmX(cols), gmmB(cols); |
| Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols) = x; |
| Map<Matrix<Scalar,Dynamic,1> >(&gmmB[0], cols) = b; |
| |
| gmmX = gmmB; |
| BENCH(gmm::upper_tri_solve(m1, gmmX, false);) |
| std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; |
| |
| gmmX = gmmB; |
| BENCH(gmm::upper_tri_solve(m2, gmmX, false);) |
| timer.stop(); |
| std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << Map<Matrix<Scalar,Dynamic,1> >(&gmmX[0], cols).transpose() << "\n"; |
| } |
| #endif |
| |
| // MTL4 |
| #ifndef NOMTL |
| { |
| std::cout << "MTL4\t" << density*100 << "%\n"; |
| MtlSparse m1(rows,cols); |
| MtlSparseRowMajor m2(rows,cols); |
| eiToMtl(sm1, m1); |
| m2 = m1; |
| mtl::dense_vector<Scalar> x(rows, 1.0); |
| mtl::dense_vector<Scalar> b(rows, 1.0); |
| |
| BENCH(x = mtl::upper_trisolve(m1,b);) |
| std::cout << " colmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x << "\n"; |
| |
| BENCH(x = mtl::upper_trisolve(m2,b);) |
| std::cout << " rowmajor^-1 * b:\t" << timer.value() << endl; |
| // std::cerr << x << "\n"; |
| } |
| #endif |
| |
| |
| std::cout << "\n\n"; |
| } |
| #endif |
| |
| #if 0 |
| // bench small matrices (in-place versus return bye value) |
| { |
| timer.reset(); |
| for (int _j=0; _j<10; ++_j) { |
| Matrix4f m = Matrix4f::Random(); |
| Vector4f b = Vector4f::Random(); |
| Vector4f x = Vector4f::Random(); |
| timer.start(); |
| for (int _k=0; _k<1000000; ++_k) { |
| b = m.inverseProduct(b); |
| } |
| timer.stop(); |
| } |
| std::cout << "4x4 :\t" << timer.value() << endl; |
| } |
| |
| { |
| timer.reset(); |
| for (int _j=0; _j<10; ++_j) { |
| Matrix4f m = Matrix4f::Random(); |
| Vector4f b = Vector4f::Random(); |
| Vector4f x = Vector4f::Random(); |
| timer.start(); |
| for (int _k=0; _k<1000000; ++_k) { |
| m.inverseProductInPlace(x); |
| } |
| timer.stop(); |
| } |
| std::cout << "4x4 IP :\t" << timer.value() << endl; |
| } |
| #endif |
| |
| return 0; |
| } |
| |