| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. Eigen itself is part of the KDE project. |
| // |
| // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "main.h" |
| #include <Eigen/QR> |
| |
| template<typename MatrixType> void qr(const MatrixType& m) |
| { |
| /* this test covers the following files: |
| QR.h |
| */ |
| int rows = m.rows(); |
| int cols = m.cols(); |
| |
| typedef typename MatrixType::Scalar Scalar; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType; |
| typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType; |
| |
| MatrixType a = MatrixType::Random(rows,cols); |
| QR<MatrixType> qrOfA(a); |
| VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR()); |
| VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR()); |
| |
| #if 0 // eigenvalues module not yet ready |
| SquareMatrixType b = a.adjoint() * a; |
| |
| // check tridiagonalization |
| Tridiagonalization<SquareMatrixType> tridiag(b); |
| VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint()); |
| |
| // check hessenberg decomposition |
| HessenbergDecomposition<SquareMatrixType> hess(b); |
| VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); |
| VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH()); |
| b = SquareMatrixType::Random(cols,cols); |
| hess.compute(b); |
| VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint()); |
| #endif |
| } |
| |
| void test_eigen2_qr() |
| { |
| for(int i = 0; i < 1; i++) { |
| CALL_SUBTEST_1( qr(Matrix2f()) ); |
| CALL_SUBTEST_2( qr(Matrix4d()) ); |
| CALL_SUBTEST_3( qr(MatrixXf(12,8)) ); |
| CALL_SUBTEST_4( qr(MatrixXcd(5,5)) ); |
| CALL_SUBTEST_4( qr(MatrixXcd(7,3)) ); |
| } |
| |
| #ifdef EIGEN_TEST_PART_5 |
| // small isFullRank test |
| { |
| Matrix3d mat; |
| mat << 1, 45, 1, 2, 2, 2, 1, 2, 3; |
| VERIFY(mat.qr().isFullRank()); |
| mat << 1, 1, 1, 2, 2, 2, 1, 2, 3; |
| //always returns true in eigen2support |
| //VERIFY(!mat.qr().isFullRank()); |
| } |
| |
| #endif |
| } |