| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| #include <Eigen/SparseExtra> |
| |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| #include <Eigen/CholmodSupport> |
| #endif |
| |
| template<typename Scalar> void sparse_ldlt(int rows, int cols) |
| { |
| static bool odd = true; |
| odd = !odd; |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, 0, 0); |
| |
| SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows); |
| DenseMatrix refMat3 = refMat2 * refMat2.adjoint(); |
| |
| refX = refMat3.template selfadjointView<Upper>().ldlt().solve(b); |
| typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix; |
| x = b; |
| SparseLDLT<SparseSelfAdjointMatrix> ldlt(m3); |
| if (ldlt.succeeded()) |
| ldlt.solveInPlace(x); |
| else |
| std::cerr << "warning LDLT failed\n"; |
| |
| VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); |
| |
| #ifdef EIGEN_CHOLMOD_SUPPORT |
| { |
| x = b; |
| SparseLDLT<SparseSelfAdjointMatrix, Cholmod> ldlt2(m3); |
| if (ldlt2.succeeded()) |
| { |
| ldlt2.solveInPlace(x); |
| VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solveInPlace"); |
| |
| x = ldlt2.solve(b); |
| VERIFY_IS_APPROX(refMat3.template selfadjointView<Upper>() * x, b); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: cholmod solve"); |
| } |
| else |
| std::cerr << "warning LDLT failed\n"; |
| } |
| #endif |
| |
| // new Simplicial LLT |
| |
| |
| // new API |
| { |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector ref_x(cols), x(cols); |
| DenseMatrix B = DenseMatrix::Random(rows,cols); |
| DenseMatrix ref_X(rows,cols), X(rows,cols); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, 0, 0); |
| |
| for(int i=0; i<rows; ++i) |
| m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); |
| |
| |
| SparseMatrix<Scalar> m3 = m2 * m2.adjoint(), m3_lo(rows,rows), m3_up(rows,rows); |
| DenseMatrix refMat3 = refMat2 * refMat2.adjoint(); |
| |
| m3_lo.template selfadjointView<Lower>().rankUpdate(m2,0); |
| m3_up.template selfadjointView<Upper>().rankUpdate(m2,0); |
| |
| // with a single vector as the rhs |
| ref_x = refMat3.template selfadjointView<Lower>().llt().solve(b); |
| |
| x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b); |
| VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, single dense rhs"); |
| |
| x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(b); |
| VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, single dense rhs"); |
| |
| x = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3_lo).solve(b); |
| VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, lower only, single dense rhs"); |
| |
| x = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3_up).solve(b); |
| VERIFY(ref_x.isApprox(x,test_precision<Scalar>()) && "SimplicialCholesky: solve, upper only, single dense rhs"); |
| |
| |
| // with multiple rhs |
| ref_X = refMat3.template selfadjointView<Lower>().llt().solve(B); |
| |
| X = SimplicialCholesky<SparseMatrix<Scalar>, Lower>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B); |
| VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, lower, multiple dense rhs"); |
| |
| X = SimplicialCholesky<SparseMatrix<Scalar>, Upper>().setMode(odd ? SimplicialCholeskyLLt : SimplicialCholeskyLDLt).compute(m3).solve(B); |
| VERIFY(ref_X.isApprox(X,test_precision<Scalar>()) && "SimplicialCholesky: solve, full storage, upper, multiple dense rhs"); |
| |
| |
| // with a sparse rhs |
| // SparseMatrix<Scalar> spB(rows,cols), spX(rows,cols); |
| // B.diagonal().array() += 1; |
| // spB = B.sparseView(0.5,1); |
| // |
| // ref_X = refMat3.template selfadjointView<Lower>().llt().solve(DenseMatrix(spB)); |
| // |
| // spX = SimplicialCholesky<SparseMatrix<Scalar>, Lower>(m3).solve(spB); |
| // VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); |
| // |
| // spX = SimplicialCholesky<SparseMatrix<Scalar>, Upper>(m3).solve(spB); |
| // VERIFY(ref_X.isApprox(spX.toDense(),test_precision<Scalar>()) && "LLT: cholmod solve, multiple sparse rhs"); |
| } |
| |
| |
| |
| // for(int i=0; i<rows; ++i) |
| // m2.coeffRef(i,i) = refMat2(i,i) = internal::abs(internal::real(refMat2(i,i))); |
| // |
| // refX = refMat2.template selfadjointView<Upper>().ldlt().solve(b); |
| // typedef SparseMatrix<Scalar,Upper|SelfAdjoint> SparseSelfAdjointMatrix; |
| // x = b; |
| // SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2); |
| // if (ldlt.succeeded()) |
| // ldlt.solveInPlace(x); |
| // else |
| // std::cerr << "warning LDLT failed\n"; |
| // |
| // VERIFY_IS_APPROX(refMat2.template selfadjointView<Upper>() * x, b); |
| // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default"); |
| |
| |
| } |
| |
| void test_sparse_ldlt() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(sparse_ldlt<double>(8, 8) ); |
| int s = internal::random<int>(1,300); |
| CALL_SUBTEST_2(sparse_ldlt<std::complex<double> >(s,s) ); |
| CALL_SUBTEST_1(sparse_ldlt<double>(s,s) ); |
| } |
| } |