| // This file is part of Eigen, a lightweight C++ template library |
| // for linear algebra. |
| // |
| // Copyright (C) 2008-2010 Gael Guennebaud <g.gael@free.fr> |
| // |
| // Eigen is free software; you can redistribute it and/or |
| // modify it under the terms of the GNU Lesser General Public |
| // License as published by the Free Software Foundation; either |
| // version 3 of the License, or (at your option) any later version. |
| // |
| // Alternatively, you can redistribute it and/or |
| // modify it under the terms of the GNU General Public License as |
| // published by the Free Software Foundation; either version 2 of |
| // the License, or (at your option) any later version. |
| // |
| // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY |
| // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the |
| // GNU General Public License for more details. |
| // |
| // You should have received a copy of the GNU Lesser General Public |
| // License and a copy of the GNU General Public License along with |
| // Eigen. If not, see <http://www.gnu.org/licenses/>. |
| |
| #include "sparse.h" |
| #include <Eigen/SparseExtra> |
| |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| #include <Eigen/UmfPackSupport> |
| #endif |
| |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| #include <Eigen/SuperLUSupport> |
| #endif |
| |
| template<typename Scalar> void sparse_lu(int rows, int cols) |
| { |
| double density = std::max(8./(rows*cols), 0.01); |
| typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; |
| typedef Matrix<Scalar,Dynamic,1> DenseVector; |
| |
| DenseVector vec1 = DenseVector::Random(rows); |
| |
| std::vector<Vector2i> zeroCoords; |
| std::vector<Vector2i> nonzeroCoords; |
| |
| SparseMatrix<Scalar> m2(rows, cols); |
| DenseMatrix refMat2(rows, cols); |
| |
| DenseVector b = DenseVector::Random(cols); |
| DenseVector refX(cols), x(cols); |
| |
| initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords); |
| |
| FullPivLU<DenseMatrix> refLu(refMat2); |
| refX = refLu.solve(b); |
| #if defined(EIGEN_SUPERLU_SUPPORT) || defined(EIGEN_UMFPACK_SUPPORT) |
| Scalar refDet = refLu.determinant(); |
| #endif |
| x.setZero(); |
| // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x); |
| // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default"); |
| |
| #ifdef EIGEN_UMFPACK_SUPPORT |
| { |
| // check solve |
| x.setZero(); |
| SparseLU<SparseMatrix<Scalar>,UmfPack> lu(m2); |
| VERIFY(lu.succeeded() && "umfpack LU decomposition failed"); |
| VERIFY(lu.solve(b,&x) && "umfpack LU solving failed"); |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); |
| VERIFY_IS_APPROX(refDet,lu.determinant()); |
| // TODO check the extracted data |
| //std::cerr << slu.matrixL() << "\n"; |
| } |
| #endif |
| |
| #ifdef EIGEN_SUPERLU_SUPPORT |
| { |
| x.setZero(); |
| SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2); |
| if (slu.succeeded()) |
| { |
| if (slu.solve(b,&x)) { |
| VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU"); |
| } |
| // std::cerr << refDet << " == " << slu.determinant() << "\n"; |
| if (slu.solve(b, &x, SvTranspose)) { |
| VERIFY(b.isApprox(m2.transpose() * x, test_precision<Scalar>())); |
| } |
| |
| if (slu.solve(b, &x, SvAdjoint)) { |
| VERIFY(b.isApprox(m2.adjoint() * x, test_precision<Scalar>())); |
| } |
| |
| if (!NumTraits<Scalar>::IsComplex) { |
| VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex |
| } |
| } |
| } |
| #endif |
| |
| } |
| |
| void test_sparse_lu() |
| { |
| for(int i = 0; i < g_repeat; i++) { |
| CALL_SUBTEST_1(sparse_lu<double>(8, 8) ); |
| int s = internal::random<int>(1,300); |
| CALL_SUBTEST_2(sparse_lu<std::complex<double> >(s,s) ); |
| CALL_SUBTEST_1(sparse_lu<double>(s,s) ); |
| } |
| } |