| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
 | // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> | 
 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
 | // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #ifndef EIGEN_LDLT_H | 
 | #define EIGEN_LDLT_H | 
 |  | 
 | namespace Eigen {  | 
 |  | 
 | namespace internal { | 
 |   template<typename MatrixType, int UpLo> struct LDLT_Traits; | 
 |  | 
 |   // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef | 
 |   enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; | 
 | } | 
 |  | 
 | /** \ingroup Cholesky_Module | 
 |   * | 
 |   * \class LDLT | 
 |   * | 
 |   * \brief Robust Cholesky decomposition of a matrix with pivoting | 
 |   * | 
 |   * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition | 
 |   * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. | 
 |   *             The other triangular part won't be read. | 
 |   * | 
 |   * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite | 
 |   * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L | 
 |   * is lower triangular with a unit diagonal and D is a diagonal matrix. | 
 |   * | 
 |   * The decomposition uses pivoting to ensure stability, so that L will have | 
 |   * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root | 
 |   * on D also stabilizes the computation. | 
 |   * | 
 |   * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky | 
 |   * decomposition to determine whether a system of equations has a solution. | 
 |   * | 
 |   * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT | 
 |   */ | 
 | template<typename _MatrixType, int _UpLo> class LDLT | 
 | { | 
 |   public: | 
 |     typedef _MatrixType MatrixType; | 
 |     enum { | 
 |       RowsAtCompileTime = MatrixType::RowsAtCompileTime, | 
 |       ColsAtCompileTime = MatrixType::ColsAtCompileTime, | 
 |       Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! | 
 |       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, | 
 |       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, | 
 |       UpLo = _UpLo | 
 |     }; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; | 
 |     typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
 |     typedef typename MatrixType::StorageIndex StorageIndex; | 
 |     typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; | 
 |  | 
 |     typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; | 
 |     typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; | 
 |  | 
 |     typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; | 
 |  | 
 |     /** \brief Default Constructor. | 
 |       * | 
 |       * The default constructor is useful in cases in which the user intends to | 
 |       * perform decompositions via LDLT::compute(const MatrixType&). | 
 |       */ | 
 |     LDLT()  | 
 |       : m_matrix(),  | 
 |         m_transpositions(),  | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false)  | 
 |     {} | 
 |  | 
 |     /** \brief Default Constructor with memory preallocation | 
 |       * | 
 |       * Like the default constructor but with preallocation of the internal data | 
 |       * according to the specified problem \a size. | 
 |       * \sa LDLT() | 
 |       */ | 
 |     explicit LDLT(Index size) | 
 |       : m_matrix(size, size), | 
 |         m_transpositions(size), | 
 |         m_temporary(size), | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false) | 
 |     {} | 
 |  | 
 |     /** \brief Constructor with decomposition | 
 |       * | 
 |       * This calculates the decomposition for the input \a matrix. | 
 |       * \sa LDLT(Index size) | 
 |       */ | 
 |     explicit LDLT(const MatrixType& matrix) | 
 |       : m_matrix(matrix.rows(), matrix.cols()), | 
 |         m_transpositions(matrix.rows()), | 
 |         m_temporary(matrix.rows()), | 
 |         m_sign(internal::ZeroSign), | 
 |         m_isInitialized(false) | 
 |     { | 
 |       compute(matrix); | 
 |     } | 
 |  | 
 |     /** Clear any existing decomposition | 
 |      * \sa rankUpdate(w,sigma) | 
 |      */ | 
 |     void setZero() | 
 |     { | 
 |       m_isInitialized = false; | 
 |     } | 
 |  | 
 |     /** \returns a view of the upper triangular matrix U */ | 
 |     inline typename Traits::MatrixU matrixU() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return Traits::getU(m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns a view of the lower triangular matrix L */ | 
 |     inline typename Traits::MatrixL matrixL() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return Traits::getL(m_matrix); | 
 |     } | 
 |  | 
 |     /** \returns the permutation matrix P as a transposition sequence. | 
 |       */ | 
 |     inline const TranspositionType& transpositionsP() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return m_transpositions; | 
 |     } | 
 |  | 
 |     /** \returns the coefficients of the diagonal matrix D */ | 
 |     inline Diagonal<const MatrixType> vectorD() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return m_matrix.diagonal(); | 
 |     } | 
 |  | 
 |     /** \returns true if the matrix is positive (semidefinite) */ | 
 |     inline bool isPositive() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; | 
 |     } | 
 |  | 
 |     /** \returns true if the matrix is negative (semidefinite) */ | 
 |     inline bool isNegative(void) const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; | 
 |     } | 
 |  | 
 |     /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. | 
 |       * | 
 |       * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . | 
 |       * | 
 |       * \note_about_checking_solutions | 
 |       * | 
 |       * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ | 
 |       * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$,  | 
 |       * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then | 
 |       * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the | 
 |       * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function | 
 |       * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. | 
 |       * | 
 |       * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() | 
 |       */ | 
 |     template<typename Rhs> | 
 |     inline const Solve<LDLT, Rhs> | 
 |     solve(const MatrixBase<Rhs>& b) const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       eigen_assert(m_matrix.rows()==b.rows() | 
 |                 && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); | 
 |       return Solve<LDLT, Rhs>(*this, b.derived()); | 
 |     } | 
 |  | 
 |     template<typename Derived> | 
 |     bool solveInPlace(MatrixBase<Derived> &bAndX) const; | 
 |  | 
 |     LDLT& compute(const MatrixType& matrix); | 
 |  | 
 |     template <typename Derived> | 
 |     LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); | 
 |  | 
 |     /** \returns the internal LDLT decomposition matrix | 
 |       * | 
 |       * TODO: document the storage layout | 
 |       */ | 
 |     inline const MatrixType& matrixLDLT() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return m_matrix; | 
 |     } | 
 |  | 
 |     MatrixType reconstructedMatrix() const; | 
 |  | 
 |     inline Index rows() const { return m_matrix.rows(); } | 
 |     inline Index cols() const { return m_matrix.cols(); } | 
 |  | 
 |     /** \brief Reports whether previous computation was successful. | 
 |       * | 
 |       * \returns \c Success if computation was succesful, | 
 |       *          \c NumericalIssue if the matrix.appears to be negative. | 
 |       */ | 
 |     ComputationInfo info() const | 
 |     { | 
 |       eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |       return Success; | 
 |     } | 
 |      | 
 |     #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 |     template<typename RhsType, typename DstType> | 
 |     EIGEN_DEVICE_FUNC | 
 |     void _solve_impl(const RhsType &rhs, DstType &dst) const; | 
 |     #endif | 
 |  | 
 |   protected: | 
 |      | 
 |     static void check_template_parameters() | 
 |     { | 
 |       EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); | 
 |     } | 
 |  | 
 |     /** \internal | 
 |       * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. | 
 |       * The strict upper part is used during the decomposition, the strict lower | 
 |       * part correspond to the coefficients of L (its diagonal is equal to 1 and | 
 |       * is not stored), and the diagonal entries correspond to D. | 
 |       */ | 
 |     MatrixType m_matrix; | 
 |     TranspositionType m_transpositions; | 
 |     TmpMatrixType m_temporary; | 
 |     internal::SignMatrix m_sign; | 
 |     bool m_isInitialized; | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template<int UpLo> struct ldlt_inplace; | 
 |  | 
 | template<> struct ldlt_inplace<Lower> | 
 | { | 
 |   template<typename MatrixType, typename TranspositionType, typename Workspace> | 
 |   static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) | 
 |   { | 
 |     using std::abs; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |     typedef typename TranspositionType::StorageIndex IndexType; | 
 |     eigen_assert(mat.rows()==mat.cols()); | 
 |     const Index size = mat.rows(); | 
 |  | 
 |     if (size <= 1) | 
 |     { | 
 |       transpositions.setIdentity(); | 
 |       if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; | 
 |       else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; | 
 |       else sign = ZeroSign; | 
 |       return true; | 
 |     } | 
 |  | 
 |     for (Index k = 0; k < size; ++k) | 
 |     { | 
 |       // Find largest diagonal element | 
 |       Index index_of_biggest_in_corner; | 
 |       mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); | 
 |       index_of_biggest_in_corner += k; | 
 |  | 
 |       transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); | 
 |       if(k != index_of_biggest_in_corner) | 
 |       { | 
 |         // apply the transposition while taking care to consider only | 
 |         // the lower triangular part | 
 |         Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element | 
 |         mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); | 
 |         mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); | 
 |         std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); | 
 |         for(Index i=k+1;i<index_of_biggest_in_corner;++i) | 
 |         { | 
 |           Scalar tmp = mat.coeffRef(i,k); | 
 |           mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); | 
 |           mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); | 
 |         } | 
 |         if(NumTraits<Scalar>::IsComplex) | 
 |           mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); | 
 |       } | 
 |  | 
 |       // partition the matrix: | 
 |       //       A00 |  -  |  - | 
 |       // lu  = A10 | A11 |  - | 
 |       //       A20 | A21 | A22 | 
 |       Index rs = size - k - 1; | 
 |       Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); | 
 |       Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); | 
 |       Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); | 
 |  | 
 |       if(k>0) | 
 |       { | 
 |         temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); | 
 |         mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); | 
 |         if(rs>0) | 
 |           A21.noalias() -= A20 * temp.head(k); | 
 |       } | 
 |        | 
 |       // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot | 
 |       // was smaller than the cutoff value. However, since LDLT is not rank-revealing | 
 |       // we should only make sure that we do not introduce INF or NaN values. | 
 |       // Remark that LAPACK also uses 0 as the cutoff value. | 
 |       RealScalar realAkk = numext::real(mat.coeffRef(k,k)); | 
 |       if((rs>0) && (abs(realAkk) > RealScalar(0))) | 
 |         A21 /= realAkk; | 
 |  | 
 |       if (sign == PositiveSemiDef) { | 
 |         if (realAkk < 0) sign = Indefinite; | 
 |       } else if (sign == NegativeSemiDef) { | 
 |         if (realAkk > 0) sign = Indefinite; | 
 |       } else if (sign == ZeroSign) { | 
 |         if (realAkk > 0) sign = PositiveSemiDef; | 
 |         else if (realAkk < 0) sign = NegativeSemiDef; | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Reference for the algorithm: Davis and Hager, "Multiple Rank | 
 |   // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) | 
 |   // Trivial rearrangements of their computations (Timothy E. Holy) | 
 |   // allow their algorithm to work for rank-1 updates even if the | 
 |   // original matrix is not of full rank. | 
 |   // Here only rank-1 updates are implemented, to reduce the | 
 |   // requirement for intermediate storage and improve accuracy | 
 |   template<typename MatrixType, typename WDerived> | 
 |   static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) | 
 |   { | 
 |     using numext::isfinite; | 
 |     typedef typename MatrixType::Scalar Scalar; | 
 |     typedef typename MatrixType::RealScalar RealScalar; | 
 |  | 
 |     const Index size = mat.rows(); | 
 |     eigen_assert(mat.cols() == size && w.size()==size); | 
 |  | 
 |     RealScalar alpha = 1; | 
 |  | 
 |     // Apply the update | 
 |     for (Index j = 0; j < size; j++) | 
 |     { | 
 |       // Check for termination due to an original decomposition of low-rank | 
 |       if (!(isfinite)(alpha)) | 
 |         break; | 
 |  | 
 |       // Update the diagonal terms | 
 |       RealScalar dj = numext::real(mat.coeff(j,j)); | 
 |       Scalar wj = w.coeff(j); | 
 |       RealScalar swj2 = sigma*numext::abs2(wj); | 
 |       RealScalar gamma = dj*alpha + swj2; | 
 |  | 
 |       mat.coeffRef(j,j) += swj2/alpha; | 
 |       alpha += swj2/dj; | 
 |  | 
 |  | 
 |       // Update the terms of L | 
 |       Index rs = size-j-1; | 
 |       w.tail(rs) -= wj * mat.col(j).tail(rs); | 
 |       if(gamma != 0) | 
 |         mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); | 
 |     } | 
 |     return true; | 
 |   } | 
 |  | 
 |   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
 |   static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) | 
 |   { | 
 |     // Apply the permutation to the input w | 
 |     tmp = transpositions * w; | 
 |  | 
 |     return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); | 
 |   } | 
 | }; | 
 |  | 
 | template<> struct ldlt_inplace<Upper> | 
 | { | 
 |   template<typename MatrixType, typename TranspositionType, typename Workspace> | 
 |   static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) | 
 |   { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); | 
 |   } | 
 |  | 
 |   template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> | 
 |   static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) | 
 |   { | 
 |     Transpose<MatrixType> matt(mat); | 
 |     return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); | 
 |   } | 
 | }; | 
 |  | 
 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> | 
 | { | 
 |   typedef const TriangularView<const MatrixType, UnitLower> MatrixL; | 
 |   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } | 
 | }; | 
 |  | 
 | template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> | 
 | { | 
 |   typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; | 
 |   typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; | 
 |   static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } | 
 |   static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } | 
 | }; | 
 |  | 
 | } // end namespace internal | 
 |  | 
 | /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix | 
 |   */ | 
 | template<typename MatrixType, int _UpLo> | 
 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) | 
 | { | 
 |   check_template_parameters(); | 
 |    | 
 |   eigen_assert(a.rows()==a.cols()); | 
 |   const Index size = a.rows(); | 
 |  | 
 |   m_matrix = a; | 
 |  | 
 |   m_transpositions.resize(size); | 
 |   m_isInitialized = false; | 
 |   m_temporary.resize(size); | 
 |   m_sign = internal::ZeroSign; | 
 |  | 
 |   internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); | 
 |  | 
 |   m_isInitialized = true; | 
 |   return *this; | 
 | } | 
 |  | 
 | /** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. | 
 |  * \param w a vector to be incorporated into the decomposition. | 
 |  * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. | 
 |  * \sa setZero() | 
 |   */ | 
 | template<typename MatrixType, int _UpLo> | 
 | template<typename Derived> | 
 | LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename NumTraits<typename MatrixType::Scalar>::Real& sigma) | 
 | { | 
 |   typedef typename TranspositionType::StorageIndex IndexType; | 
 |   const Index size = w.rows(); | 
 |   if (m_isInitialized) | 
 |   { | 
 |     eigen_assert(m_matrix.rows()==size); | 
 |   } | 
 |   else | 
 |   {     | 
 |     m_matrix.resize(size,size); | 
 |     m_matrix.setZero(); | 
 |     m_transpositions.resize(size); | 
 |     for (Index i = 0; i < size; i++) | 
 |       m_transpositions.coeffRef(i) = IndexType(i); | 
 |     m_temporary.resize(size); | 
 |     m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; | 
 |     m_isInitialized = true; | 
 |   } | 
 |  | 
 |   internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); | 
 |  | 
 |   return *this; | 
 | } | 
 |  | 
 | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
 | template<typename _MatrixType, int _UpLo> | 
 | template<typename RhsType, typename DstType> | 
 | void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const | 
 | { | 
 |   eigen_assert(rhs.rows() == rows()); | 
 |   // dst = P b | 
 |   dst = m_transpositions * rhs; | 
 |  | 
 |   // dst = L^-1 (P b) | 
 |   matrixL().solveInPlace(dst); | 
 |  | 
 |   // dst = D^-1 (L^-1 P b) | 
 |   // more precisely, use pseudo-inverse of D (see bug 241) | 
 |   using std::abs; | 
 |   const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); | 
 |   // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon | 
 |   // as motivated by LAPACK's xGELSS: | 
 |   // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); | 
 |   // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest | 
 |   // diagonal element is not well justified and leads to numerical issues in some cases. | 
 |   // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. | 
 |   RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); | 
 |    | 
 |   for (Index i = 0; i < vecD.size(); ++i) | 
 |   { | 
 |     if(abs(vecD(i)) > tolerance) | 
 |       dst.row(i) /= vecD(i); | 
 |     else | 
 |       dst.row(i).setZero(); | 
 |   } | 
 |  | 
 |   // dst = L^-T (D^-1 L^-1 P b) | 
 |   matrixU().solveInPlace(dst); | 
 |  | 
 |   // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b | 
 |   dst = m_transpositions.transpose() * dst; | 
 | } | 
 | #endif | 
 |  | 
 | /** \internal use x = ldlt_object.solve(x); | 
 |   * | 
 |   * This is the \em in-place version of solve(). | 
 |   * | 
 |   * \param bAndX represents both the right-hand side matrix b and result x. | 
 |   * | 
 |   * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. | 
 |   * | 
 |   * This version avoids a copy when the right hand side matrix b is not | 
 |   * needed anymore. | 
 |   * | 
 |   * \sa LDLT::solve(), MatrixBase::ldlt() | 
 |   */ | 
 | template<typename MatrixType,int _UpLo> | 
 | template<typename Derived> | 
 | bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const | 
 | { | 
 |   eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |   eigen_assert(m_matrix.rows() == bAndX.rows()); | 
 |  | 
 |   bAndX = this->solve(bAndX); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /** \returns the matrix represented by the decomposition, | 
 |  * i.e., it returns the product: P^T L D L^* P. | 
 |  * This function is provided for debug purpose. */ | 
 | template<typename MatrixType, int _UpLo> | 
 | MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const | 
 | { | 
 |   eigen_assert(m_isInitialized && "LDLT is not initialized."); | 
 |   const Index size = m_matrix.rows(); | 
 |   MatrixType res(size,size); | 
 |  | 
 |   // P | 
 |   res.setIdentity(); | 
 |   res = transpositionsP() * res; | 
 |   // L^* P | 
 |   res = matrixU() * res; | 
 |   // D(L^*P) | 
 |   res = vectorD().real().asDiagonal() * res; | 
 |   // L(DL^*P) | 
 |   res = matrixL() * res; | 
 |   // P^T (LDL^*P) | 
 |   res = transpositionsP().transpose() * res; | 
 |  | 
 |   return res; | 
 | } | 
 |  | 
 | #ifndef __CUDACC__ | 
 | /** \cholesky_module | 
 |   * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
 |   * \sa MatrixBase::ldlt() | 
 |   */ | 
 | template<typename MatrixType, unsigned int UpLo> | 
 | inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> | 
 | SelfAdjointView<MatrixType, UpLo>::ldlt() const | 
 | { | 
 |   return LDLT<PlainObject,UpLo>(m_matrix); | 
 | } | 
 |  | 
 | /** \cholesky_module | 
 |   * \returns the Cholesky decomposition with full pivoting without square root of \c *this | 
 |   * \sa SelfAdjointView::ldlt() | 
 |   */ | 
 | template<typename Derived> | 
 | inline const LDLT<typename MatrixBase<Derived>::PlainObject> | 
 | MatrixBase<Derived>::ldlt() const | 
 | { | 
 |   return LDLT<PlainObject>(derived()); | 
 | } | 
 | #endif // __CUDACC__ | 
 |  | 
 | } // end namespace Eigen | 
 |  | 
 | #endif // EIGEN_LDLT_H |