|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_ARRAY_H | 
|  | #define EIGEN_ARRAY_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /** \class Array | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * \brief General-purpose arrays with easy API for coefficient-wise operations | 
|  | * | 
|  | * The %Array class is very similar to the Matrix class. It provides | 
|  | * general-purpose one- and two-dimensional arrays. The difference between the | 
|  | * %Array and the %Matrix class is primarily in the API: the API for the | 
|  | * %Array class provides easy access to coefficient-wise operations, while the | 
|  | * API for the %Matrix class provides easy access to linear-algebra | 
|  | * operations. | 
|  | * | 
|  | * See documentation of class Matrix for detailed information on the template parameters | 
|  | * storage layout. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_ARRAY_PLUGIN. | 
|  | * | 
|  | * \sa \ref TutorialArrayClass, \ref TopicClassHierarchy | 
|  | */ | 
|  | namespace internal { | 
|  | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> | 
|  | struct traits<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > : traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > | 
|  | { | 
|  | typedef ArrayXpr XprKind; | 
|  | typedef ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > XprBase; | 
|  | }; | 
|  | } | 
|  |  | 
|  | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> | 
|  | class Array | 
|  | : public PlainObjectBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > | 
|  | { | 
|  | public: | 
|  |  | 
|  | typedef PlainObjectBase<Array> Base; | 
|  | EIGEN_DENSE_PUBLIC_INTERFACE(Array) | 
|  |  | 
|  | enum { Options = _Options }; | 
|  | typedef typename Base::PlainObject PlainObject; | 
|  |  | 
|  | protected: | 
|  | template <typename Derived, typename OtherDerived, bool IsVector> | 
|  | friend struct internal::conservative_resize_like_impl; | 
|  |  | 
|  | using Base::m_storage; | 
|  |  | 
|  | public: | 
|  |  | 
|  | using Base::base; | 
|  | using Base::coeff; | 
|  | using Base::coeffRef; | 
|  |  | 
|  | /** | 
|  | * The usage of | 
|  | *   using Base::operator=; | 
|  | * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped | 
|  | * the usage of 'using'. This should be done only for operator=. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array& operator=(const EigenBase<OtherDerived> &other) | 
|  | { | 
|  | return Base::operator=(other); | 
|  | } | 
|  |  | 
|  | /** Set all the entries to \a value. | 
|  | * \sa DenseBase::setConstant(), DenseBase::fill() | 
|  | */ | 
|  | /* This overload is needed because the usage of | 
|  | *   using Base::operator=; | 
|  | * fails on MSVC. Since the code below is working with GCC and MSVC, we skipped | 
|  | * the usage of 'using'. This should be done only for operator=. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array& operator=(const Scalar &value) | 
|  | { | 
|  | Base::setConstant(value); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Copies the value of the expression \a other into \c *this with automatic resizing. | 
|  | * | 
|  | * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), | 
|  | * it will be initialized. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array& operator=(const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | return Base::_set(other); | 
|  | } | 
|  |  | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array& operator=(const Array& other) | 
|  | { | 
|  | return Base::_set(other); | 
|  | } | 
|  |  | 
|  | /** Default constructor. | 
|  | * | 
|  | * For fixed-size matrices, does nothing. | 
|  | * | 
|  | * For dynamic-size matrices, creates an empty matrix of size 0. Does not allocate any array. Such a matrix | 
|  | * is called a null matrix. This constructor is the unique way to create null matrices: resizing | 
|  | * a matrix to 0 is not supported. | 
|  | * | 
|  | * \sa resize(Index,Index) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array() : Base() | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | // FIXME is it still needed ?? | 
|  | /** \internal */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | Array(internal::constructor_without_unaligned_array_assert) | 
|  | : Base(internal::constructor_without_unaligned_array_assert()) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_HAVE_RVALUE_REFERENCES | 
|  | EIGEN_DEVICE_FUNC | 
|  | Array(Array&& other) | 
|  | : Base(std::move(other)) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | if (RowsAtCompileTime!=Dynamic && ColsAtCompileTime!=Dynamic) | 
|  | Base::_set_noalias(other); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | Array& operator=(Array&& other) | 
|  | { | 
|  | other.swap(*this); | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE explicit Array(const T& x) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | Base::template _init1<T>(x); | 
|  | } | 
|  |  | 
|  | template<typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array(const T0& val0, const T1& val1) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | this->template _init2<T0,T1>(val0, val1); | 
|  | } | 
|  | #else | 
|  | /** \brief Constructs a fixed-sized array initialized with coefficients starting at \a data */ | 
|  | EIGEN_DEVICE_FUNC explicit Array(const Scalar *data); | 
|  | /** Constructs a vector or row-vector with given dimension. \only_for_vectors | 
|  | * | 
|  | * Note that this is only useful for dynamic-size vectors. For fixed-size vectors, | 
|  | * it is redundant to pass the dimension here, so it makes more sense to use the default | 
|  | * constructor Array() instead. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE explicit Array(Index dim); | 
|  | /** constructs an initialized 1x1 Array with the given coefficient */ | 
|  | Array(const Scalar& value); | 
|  | /** constructs an uninitialized array with \a rows rows and \a cols columns. | 
|  | * | 
|  | * This is useful for dynamic-size arrays. For fixed-size arrays, | 
|  | * it is redundant to pass these parameters, so one should use the default constructor | 
|  | * Array() instead. */ | 
|  | Array(Index rows, Index cols); | 
|  | /** constructs an initialized 2D vector with given coefficients */ | 
|  | Array(const Scalar& val0, const Scalar& val1); | 
|  | #endif | 
|  |  | 
|  | /** constructs an initialized 3D vector with given coefficients */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 3) | 
|  | m_storage.data()[0] = val0; | 
|  | m_storage.data()[1] = val1; | 
|  | m_storage.data()[2] = val2; | 
|  | } | 
|  | /** constructs an initialized 4D vector with given coefficients */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array(const Scalar& val0, const Scalar& val1, const Scalar& val2, const Scalar& val3) | 
|  | { | 
|  | Base::_check_template_params(); | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Array, 4) | 
|  | m_storage.data()[0] = val0; | 
|  | m_storage.data()[1] = val1; | 
|  | m_storage.data()[2] = val2; | 
|  | m_storage.data()[3] = val3; | 
|  | } | 
|  |  | 
|  | /** Copy constructor */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array(const Array& other) | 
|  | : Base(other) | 
|  | { } | 
|  |  | 
|  | /** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Array(const EigenBase<OtherDerived> &other) | 
|  | : Base(other.derived()) | 
|  | { } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; } | 
|  | EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); } | 
|  |  | 
|  | #ifdef EIGEN_ARRAY_PLUGIN | 
|  | #include EIGEN_ARRAY_PLUGIN | 
|  | #endif | 
|  |  | 
|  | private: | 
|  |  | 
|  | template<typename MatrixType, typename OtherDerived, bool SwapPointers> | 
|  | friend struct internal::matrix_swap_impl; | 
|  | }; | 
|  |  | 
|  | /** \defgroup arraytypedefs Global array typedefs | 
|  | * \ingroup Core_Module | 
|  | * | 
|  | * Eigen defines several typedef shortcuts for most common 1D and 2D array types. | 
|  | * | 
|  | * The general patterns are the following: | 
|  | * | 
|  | * \c ArrayRowsColsType where \c Rows and \c Cols can be \c 2,\c 3,\c 4 for fixed size square matrices or \c X for dynamic size, | 
|  | * and where \c Type can be \c i for integer, \c f for float, \c d for double, \c cf for complex float, \c cd | 
|  | * for complex double. | 
|  | * | 
|  | * For example, \c Array33d is a fixed-size 3x3 array type of doubles, and \c ArrayXXf is a dynamic-size matrix of floats. | 
|  | * | 
|  | * There are also \c ArraySizeType which are self-explanatory. For example, \c Array4cf is | 
|  | * a fixed-size 1D array of 4 complex floats. | 
|  | * | 
|  | * \sa class Array | 
|  | */ | 
|  |  | 
|  | #define EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix)   \ | 
|  | /** \ingroup arraytypedefs */                                    \ | 
|  | typedef Array<Type, Size, Size> Array##SizeSuffix##SizeSuffix##TypeSuffix;  \ | 
|  | /** \ingroup arraytypedefs */                                    \ | 
|  | typedef Array<Type, Size, 1>    Array##SizeSuffix##TypeSuffix; | 
|  |  | 
|  | #define EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, Size)         \ | 
|  | /** \ingroup arraytypedefs */                                    \ | 
|  | typedef Array<Type, Size, Dynamic> Array##Size##X##TypeSuffix;  \ | 
|  | /** \ingroup arraytypedefs */                                    \ | 
|  | typedef Array<Type, Dynamic, Size> Array##X##Size##TypeSuffix; | 
|  |  | 
|  | #define EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 2, 2) \ | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 3, 3) \ | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, 4, 4) \ | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS(Type, TypeSuffix, Dynamic, X) \ | 
|  | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 2) \ | 
|  | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 3) \ | 
|  | EIGEN_MAKE_ARRAY_FIXED_TYPEDEFS(Type, TypeSuffix, 4) | 
|  |  | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(int,                  i) | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(float,                f) | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(double,               d) | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<float>,  cf) | 
|  | EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES(std::complex<double>, cd) | 
|  |  | 
|  | #undef EIGEN_MAKE_ARRAY_TYPEDEFS_ALL_SIZES | 
|  | #undef EIGEN_MAKE_ARRAY_TYPEDEFS | 
|  |  | 
|  | #undef EIGEN_MAKE_ARRAY_TYPEDEFS_LARGE | 
|  |  | 
|  | #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, SizeSuffix) \ | 
|  | using Eigen::Matrix##SizeSuffix##TypeSuffix; \ | 
|  | using Eigen::Vector##SizeSuffix##TypeSuffix; \ | 
|  | using Eigen::RowVector##SizeSuffix##TypeSuffix; | 
|  |  | 
|  | #define EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(TypeSuffix) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 2) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 3) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, 4) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE_AND_SIZE(TypeSuffix, X) \ | 
|  |  | 
|  | #define EIGEN_USING_ARRAY_TYPEDEFS \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(i) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(f) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(d) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cf) \ | 
|  | EIGEN_USING_ARRAY_TYPEDEFS_FOR_TYPE(cd) | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_ARRAY_H |