|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_MATHFUNCTIONS_H | 
|  | #define EIGEN_MATHFUNCTIONS_H | 
|  |  | 
|  | // source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html | 
|  | #define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406 | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | // On WINCE, std::abs is defined for int only, so let's defined our own overloads: | 
|  | // This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too. | 
|  | #if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500 | 
|  | long        abs(long        x) { return (labs(x));  } | 
|  | double      abs(double      x) { return (fabs(x));  } | 
|  | float       abs(float       x) { return (fabsf(x)); } | 
|  | long double abs(long double x) { return (fabsl(x)); } | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /** \internal \struct global_math_functions_filtering_base | 
|  | * | 
|  | * What it does: | 
|  | * Defines a typedef 'type' as follows: | 
|  | * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then | 
|  | *   global_math_functions_filtering_base<T>::type is a typedef for it. | 
|  | * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T. | 
|  | * | 
|  | * How it's used: | 
|  | * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions. | 
|  | * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know | 
|  | * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>. | 
|  | * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization | 
|  | * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it. | 
|  | * | 
|  | * How it's implemented: | 
|  | * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace | 
|  | * the typename dummy by an integer template parameter, it doesn't work anymore! | 
|  | */ | 
|  |  | 
|  | template<typename T, typename dummy = void> | 
|  | struct global_math_functions_filtering_base | 
|  | { | 
|  | typedef T type; | 
|  | }; | 
|  |  | 
|  | template<typename T> struct always_void { typedef void type; }; | 
|  |  | 
|  | template<typename T> | 
|  | struct global_math_functions_filtering_base | 
|  | <T, | 
|  | typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type | 
|  | > | 
|  | { | 
|  | typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type; | 
|  | }; | 
|  |  | 
|  | #define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type> | 
|  | #define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of real                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct real_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | using std::real; | 
|  | return real(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct real_impl : real_default_impl<Scalar> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of imag                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct imag_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar&) | 
|  | { | 
|  | return RealScalar(0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | using std::imag; | 
|  | return imag(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of real_ref                                             * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_ref_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar& run(Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[0]; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const RealScalar& run(const Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<const RealScalar*>(&x)[0]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct real_ref_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real & type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of imag_ref                                             * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex> | 
|  | struct imag_ref_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar& run(Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[1]; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const RealScalar& run(const Scalar& x) | 
|  | { | 
|  | return reinterpret_cast<RealScalar*>(&x)[1]; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_default_impl<Scalar, false> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(Scalar&) | 
|  | { | 
|  | return Scalar(0); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline const Scalar run(const Scalar&) | 
|  | { | 
|  | return Scalar(0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct imag_ref_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real & type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of conj                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct conj_impl | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | return x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct conj_impl<Scalar,true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | using std::conj; | 
|  | return conj(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct conj_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of abs2                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct abs2_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return x*x; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename RealScalar> | 
|  | struct abs2_impl<std::complex<RealScalar> > | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const std::complex<RealScalar>& x) | 
|  | { | 
|  | return real(x)*real(x) + imag(x)*imag(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct abs2_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of norm1                                                * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsComplex> | 
|  | struct norm1_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(real(x)) + abs(imag(x)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_default_impl<Scalar, false> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct norm1_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of hypot                                                * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct hypot_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | static inline RealScalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(max); | 
|  | EIGEN_USING_STD_MATH(min); | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | EIGEN_USING_STD_MATH(sqrt); | 
|  | RealScalar _x = abs(x); | 
|  | RealScalar _y = abs(y); | 
|  | Scalar p, qp; | 
|  | if(_x>_y) | 
|  | { | 
|  | p = _x; | 
|  | qp = _y / p; | 
|  | } | 
|  | else | 
|  | { | 
|  | p = _y; | 
|  | qp = _x / p; | 
|  | } | 
|  | if(p==RealScalar(0)) return RealScalar(0); | 
|  | return p * sqrt(RealScalar(1) + qp*qp); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct hypot_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of cast                                                 * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename OldType, typename NewType> | 
|  | struct cast_impl | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline NewType run(const OldType& x) | 
|  | { | 
|  | return static_cast<NewType>(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // here, for once, we're plainly returning NewType: we don't want cast to do weird things. | 
|  |  | 
|  | template<typename OldType, typename NewType> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline NewType cast(const OldType& x) | 
|  | { | 
|  | return cast_impl<OldType, NewType>::run(x); | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of round                                                   * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename Scalar> | 
|  | struct round_impl { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) | 
|  | using std::round; | 
|  | return round(x); | 
|  | } | 
|  | }; | 
|  | #else | 
|  | template<typename Scalar> | 
|  | struct round_impl | 
|  | { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL) | 
|  | EIGEN_USING_STD_MATH(floor); | 
|  | EIGEN_USING_STD_MATH(ceil); | 
|  | return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5)); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct round_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of arg                                                     * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename Scalar> | 
|  | struct arg_impl { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(arg); | 
|  | return arg(x); | 
|  | } | 
|  | }; | 
|  | #else | 
|  | template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex> | 
|  | struct arg_default_impl | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct arg_default_impl<Scalar,true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline RealScalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(arg); | 
|  | return arg(x); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {}; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct arg_retval | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of log1p                                                   * | 
|  | ****************************************************************************/ | 
|  | template<typename Scalar, bool isComplex = NumTraits<Scalar>::IsComplex > | 
|  | struct log1p_impl | 
|  | { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | EIGEN_USING_STD_MATH(log); | 
|  | Scalar x1p = RealScalar(1) + x; | 
|  | return ( x1p == Scalar(1) ) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) ); | 
|  | } | 
|  | }; | 
|  |  | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | template<typename Scalar> | 
|  | struct log1p_impl<Scalar, false> { | 
|  | static inline Scalar run(const Scalar& x) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) | 
|  | using std::log1p; | 
|  | return log1p(x); | 
|  | } | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct log1p_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of pow                                                  * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, bool IsInteger> | 
|  | struct pow_default_impl | 
|  | { | 
|  | typedef Scalar retval; | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(pow); | 
|  | return pow(x, y); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct pow_default_impl<Scalar, true> | 
|  | { | 
|  | static inline Scalar run(Scalar x, Scalar y) | 
|  | { | 
|  | Scalar res(1); | 
|  | eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0); | 
|  | if(y & 1) res *= x; | 
|  | y >>= 1; | 
|  | while(y) | 
|  | { | 
|  | x *= x; | 
|  | if(y&1) res *= x; | 
|  | y >>= 1; | 
|  | } | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct pow_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of random                                               * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, | 
|  | bool IsComplex, | 
|  | bool IsInteger> | 
|  | struct random_default_impl {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_retval | 
|  | { | 
|  | typedef Scalar type; | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y); | 
|  | template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(); | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, false, false> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX); | 
|  | } | 
|  | static inline Scalar run() | 
|  | { | 
|  | return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1)); | 
|  | } | 
|  | }; | 
|  |  | 
|  | enum { | 
|  | meta_floor_log2_terminate, | 
|  | meta_floor_log2_move_up, | 
|  | meta_floor_log2_move_down, | 
|  | meta_floor_log2_bogus | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector | 
|  | { | 
|  | enum { middle = (lower + upper) / 2, | 
|  | value = (upper <= lower + 1) ? int(meta_floor_log2_terminate) | 
|  | : (n < (1 << middle)) ? int(meta_floor_log2_move_down) | 
|  | : (n==0) ? int(meta_floor_log2_bogus) | 
|  | : int(meta_floor_log2_move_up) | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, | 
|  | int lower = 0, | 
|  | int upper = sizeof(unsigned int) * CHAR_BIT - 1, | 
|  | int selector = meta_floor_log2_selector<n, lower, upper>::value> | 
|  | struct meta_floor_log2 {}; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down> | 
|  | { | 
|  | enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up> | 
|  | { | 
|  | enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate> | 
|  | { | 
|  | enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower }; | 
|  | }; | 
|  |  | 
|  | template<unsigned int n, int lower, int upper> | 
|  | struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus> | 
|  | { | 
|  | // no value, error at compile time | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, false, true> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | using std::max; | 
|  | using std::min; | 
|  | typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX; | 
|  | if(y<x) | 
|  | return x; | 
|  | std::size_t range = ScalarX(y)-ScalarX(x); | 
|  | std::size_t offset = 0; | 
|  | // rejection sampling | 
|  | std::size_t divisor    = (range+RAND_MAX-1)/(range+1); | 
|  | std::size_t multiplier = (range+RAND_MAX-1)/std::size_t(RAND_MAX); | 
|  |  | 
|  | do { | 
|  | offset = ( (std::size_t(std::rand()) * multiplier) / divisor ); | 
|  | } while (offset > range); | 
|  |  | 
|  | return Scalar(ScalarX(x) + offset); | 
|  | } | 
|  |  | 
|  | static inline Scalar run() | 
|  | { | 
|  | #ifdef EIGEN_MAKING_DOCS | 
|  | return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10)); | 
|  | #else | 
|  | enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value, | 
|  | scalar_bits = sizeof(Scalar) * CHAR_BIT, | 
|  | shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)), | 
|  | offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0 | 
|  | }; | 
|  | return Scalar((std::rand() >> shift) - offset); | 
|  | #endif | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct random_default_impl<Scalar, true, false> | 
|  | { | 
|  | static inline Scalar run(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return Scalar(random(real(x), real(y)), | 
|  | random(imag(x), imag(y))); | 
|  | } | 
|  | static inline Scalar run() | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | return Scalar(random<RealScalar>(), random<RealScalar>()); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random() | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(); | 
|  | } | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Generic math functions                                                    * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | namespace numext { | 
|  |  | 
|  | #ifndef __CUDA_ARCH__ | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(min); | 
|  | return min EIGEN_NOT_A_MACRO (x,y); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(max); | 
|  | return max EIGEN_NOT_A_MACRO (x,y); | 
|  | } | 
|  | #else | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y) | 
|  | { | 
|  | return y < x ? y : x; | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y) | 
|  | { | 
|  | return fmin(x, y); | 
|  | } | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y) | 
|  | { | 
|  | return x < y ? y : x; | 
|  | } | 
|  | template<> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y) | 
|  | { | 
|  | return fmax(x, y); | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x) | 
|  | { | 
|  | return internal::real_ref_impl<Scalar>::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x) | 
|  | { | 
|  | return internal::imag_ref_impl<Scalar>::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | bool (isfinite)(const T& x) | 
|  | { | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | using std::isfinite; | 
|  | return isfinite EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | bool (isnan)(const T& x) | 
|  | { | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | using std::isnan; | 
|  | return isnan EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x != x; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | bool (isinf)(const T& x) | 
|  | { | 
|  | #if EIGEN_HAS_CXX11_MATH | 
|  | using std::isinf; | 
|  | return isinf EIGEN_NOT_A_MACRO (x); | 
|  | #else | 
|  | return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | bool (isfinite)(const std::complex<T>& x) | 
|  | { | 
|  | return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x)); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | bool (isnan)(const std::complex<T>& x) | 
|  | { | 
|  | return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x)); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | bool (isinf)(const std::complex<T>& x) | 
|  | { | 
|  | return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x)); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x) | 
|  | { | 
|  | return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | T (floor)(const T& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(floor); | 
|  | return floor(x); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | T (ceil)(const T& x) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(ceil); | 
|  | return ceil(x); | 
|  | } | 
|  |  | 
|  | // Log base 2 for 32 bits positive integers. | 
|  | // Conveniently returns 0 for x==0. | 
|  | inline int log2(int x) | 
|  | { | 
|  | eigen_assert(x>=0); | 
|  | unsigned int v(x); | 
|  | static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; | 
|  | v |= v >> 1; | 
|  | v |= v >> 2; | 
|  | v |= v >> 4; | 
|  | v |= v >> 8; | 
|  | v |= v >> 16; | 
|  | return table[(v * 0x07C4ACDDU) >> 27]; | 
|  | } | 
|  |  | 
|  | } // end namespace numext | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /**************************************************************************** | 
|  | * Implementation of fuzzy comparisons                                       * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | template<typename Scalar, | 
|  | bool IsComplex, | 
|  | bool IsInteger> | 
|  | struct scalar_fuzzy_default_impl {}; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, false, false> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(x) <= abs(y) * prec; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(min); | 
|  | EIGEN_USING_STD_MATH(abs); | 
|  | return abs(x - y) <= (min)(abs(x), abs(y)) * prec; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | return x <= y || isApprox(x, y, prec); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, false, true> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&) | 
|  | { | 
|  | return x == Scalar(0); | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&) | 
|  | { | 
|  | return x == y; | 
|  | } | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&) | 
|  | { | 
|  | return x <= y; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_default_impl<Scalar, true, false> | 
|  | { | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | template<typename OtherScalar> | 
|  | static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec) | 
|  | { | 
|  | return numext::abs2(x) <= numext::abs2(y) * prec * prec; | 
|  | } | 
|  | static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec) | 
|  | { | 
|  | EIGEN_USING_STD_MATH(min); | 
|  | return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar> | 
|  | struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {}; | 
|  |  | 
|  | template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, | 
|  | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isApprox(const Scalar& x, const Scalar& y, | 
|  | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision); | 
|  | } | 
|  |  | 
|  | template<typename Scalar> EIGEN_DEVICE_FUNC | 
|  | inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, | 
|  | typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision()) | 
|  | { | 
|  | return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision); | 
|  | } | 
|  |  | 
|  | /****************************************** | 
|  | ***  The special case of the  bool type *** | 
|  | ******************************************/ | 
|  |  | 
|  | template<> struct random_impl<bool> | 
|  | { | 
|  | static inline bool run() | 
|  | { | 
|  | return random<int>(0,1)==0 ? false : true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct scalar_fuzzy_impl<bool> | 
|  | { | 
|  | typedef bool RealScalar; | 
|  |  | 
|  | template<typename OtherScalar> EIGEN_DEVICE_FUNC | 
|  | static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&) | 
|  | { | 
|  | return !x; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApprox(bool x, bool y, bool) | 
|  | { | 
|  | return x == y; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&) | 
|  | { | 
|  | return (!x) || y; | 
|  | } | 
|  |  | 
|  | }; | 
|  |  | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_MATHFUNCTIONS_H |