|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_DENSESTORAGEBASE_H | 
|  | #define EIGEN_DENSESTORAGEBASE_H | 
|  |  | 
|  | #if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO) | 
|  | # define EIGEN_INITIALIZE_COEFFS | 
|  | # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0); | 
|  | #elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN) | 
|  | # define EIGEN_INITIALIZE_COEFFS | 
|  | # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN(); | 
|  | #else | 
|  | # undef EIGEN_INITIALIZE_COEFFS | 
|  | # define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #endif | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow { | 
|  | template<typename Index> | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_ALWAYS_INLINE void run(Index, Index) | 
|  | { | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> struct check_rows_cols_for_overflow<Dynamic> { | 
|  | template<typename Index> | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols) | 
|  | { | 
|  | // http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242 | 
|  | // we assume Index is signed | 
|  | Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed | 
|  | bool error = (rows == 0 || cols == 0) ? false | 
|  | : (rows > max_index / cols); | 
|  | if (error) | 
|  | throw_std_bad_alloc(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename Derived, | 
|  | typename OtherDerived = Derived, | 
|  | bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)> | 
|  | struct conservative_resize_like_impl; | 
|  |  | 
|  | template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \class PlainObjectBase | 
|  | * \brief %Dense storage base class for matrices and arrays. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN. | 
|  | * | 
|  | * \sa \ref TopicClassHierarchy | 
|  | */ | 
|  | #ifdef EIGEN_PARSED_BY_DOXYGEN | 
|  | namespace internal { | 
|  |  | 
|  | // this is a workaround to doxygen not being able to understand the inheritance logic | 
|  | // when it is hidden by the dense_xpr_base helper struct. | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {}; | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> | 
|  | struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > | 
|  | : public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {}; | 
|  | /** This class is just a workaround for Doxygen and it does not not actually exist. */ | 
|  | template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> | 
|  | struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > | 
|  | : public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {}; | 
|  |  | 
|  | } // namespace internal | 
|  |  | 
|  | template<typename Derived> | 
|  | class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived> | 
|  | #else | 
|  | template<typename Derived> | 
|  | class PlainObjectBase : public internal::dense_xpr_base<Derived>::type | 
|  | #endif | 
|  | { | 
|  | public: | 
|  | enum { Options = internal::traits<Derived>::Options }; | 
|  | typedef typename internal::dense_xpr_base<Derived>::type Base; | 
|  |  | 
|  | typedef typename internal::traits<Derived>::StorageKind StorageKind; | 
|  | typedef typename internal::traits<Derived>::Scalar Scalar; | 
|  |  | 
|  | typedef typename internal::packet_traits<Scalar>::type PacketScalar; | 
|  | typedef typename NumTraits<Scalar>::Real RealScalar; | 
|  | typedef Derived DenseType; | 
|  |  | 
|  | using Base::RowsAtCompileTime; | 
|  | using Base::ColsAtCompileTime; | 
|  | using Base::SizeAtCompileTime; | 
|  | using Base::MaxRowsAtCompileTime; | 
|  | using Base::MaxColsAtCompileTime; | 
|  | using Base::MaxSizeAtCompileTime; | 
|  | using Base::IsVectorAtCompileTime; | 
|  | using Base::Flags; | 
|  |  | 
|  | template<typename PlainObjectType, int MapOptions, typename StrideType> friend class Eigen::Map; | 
|  | friend  class Eigen::Map<Derived, Unaligned>; | 
|  | typedef Eigen::Map<Derived, Unaligned>  MapType; | 
|  | friend  class Eigen::Map<const Derived, Unaligned>; | 
|  | typedef const Eigen::Map<const Derived, Unaligned> ConstMapType; | 
|  | #if EIGEN_MAX_ALIGN_BYTES>0 | 
|  | // for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice. | 
|  | friend  class Eigen::Map<Derived, AlignedMax>; | 
|  | friend  class Eigen::Map<const Derived, AlignedMax>; | 
|  | #endif | 
|  | typedef Eigen::Map<Derived, AlignedMax> AlignedMapType; | 
|  | typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType; | 
|  | template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; }; | 
|  | template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; }; | 
|  | template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, AlignedMax, StrideType> type; }; | 
|  | template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; }; | 
|  |  | 
|  | protected: | 
|  | DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage; | 
|  |  | 
|  | public: | 
|  | enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) }; | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign) | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | Base& base() { return *static_cast<Base*>(this); } | 
|  | EIGEN_DEVICE_FUNC | 
|  | const Base& base() const { return *static_cast<const Base*>(this); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); } | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const | 
|  | { | 
|  | if(Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const | 
|  | { | 
|  | return m_storage.data()[index]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId) | 
|  | { | 
|  | if(Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) | 
|  | { | 
|  | return m_storage.data()[index]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const | 
|  | { | 
|  | if(Flags & RowMajorBit) | 
|  | return m_storage.data()[colId + rowId * m_storage.cols()]; | 
|  | else // column-major | 
|  | return m_storage.data()[rowId + colId * m_storage.rows()]; | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const | 
|  | { | 
|  | return m_storage.data()[index]; | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const | 
|  | { | 
|  | return internal::ploadt<PacketScalar, LoadMode> | 
|  | (m_storage.data() + (Flags & RowMajorBit | 
|  | ? colId + rowId * m_storage.cols() | 
|  | : rowId + colId * m_storage.rows())); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<int LoadMode> | 
|  | EIGEN_STRONG_INLINE PacketScalar packet(Index index) const | 
|  | { | 
|  | return internal::ploadt<PacketScalar, LoadMode>(m_storage.data() + index); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<int StoreMode> | 
|  | EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val) | 
|  | { | 
|  | internal::pstoret<Scalar, PacketScalar, StoreMode> | 
|  | (m_storage.data() + (Flags & RowMajorBit | 
|  | ? colId + rowId * m_storage.cols() | 
|  | : rowId + colId * m_storage.rows()), val); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<int StoreMode> | 
|  | EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val) | 
|  | { | 
|  | internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val); | 
|  | } | 
|  |  | 
|  | /** \returns a const pointer to the data array of this matrix */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const | 
|  | { return m_storage.data(); } | 
|  |  | 
|  | /** \returns a pointer to the data array of this matrix */ | 
|  | EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data() | 
|  | { return m_storage.data(); } | 
|  |  | 
|  | /** Resizes \c *this to a \a rows x \a cols matrix. | 
|  | * | 
|  | * This method is intended for dynamic-size matrices, although it is legal to call it on any | 
|  | * matrix as long as fixed dimensions are left unchanged. If you only want to change the number | 
|  | * of rows and/or of columns, you can use resize(NoChange_t, Index), resize(Index, NoChange_t). | 
|  | * | 
|  | * If the current number of coefficients of \c *this exactly matches the | 
|  | * product \a rows * \a cols, then no memory allocation is performed and | 
|  | * the current values are left unchanged. In all other cases, including | 
|  | * shrinking, the data is reallocated and all previous values are lost. | 
|  | * | 
|  | * Example: \include Matrix_resize_int_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_int_int.out | 
|  | * | 
|  | * \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void resize(Index rows, Index cols) | 
|  | { | 
|  | eigen_assert(   EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime) | 
|  | && EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime) | 
|  | && EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime) | 
|  | && EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime) | 
|  | && rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array."); | 
|  | internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols); | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | Index size = rows*cols; | 
|  | bool size_changed = size != this->size(); | 
|  | m_storage.resize(size, rows, cols); | 
|  | if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #else | 
|  | internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols); | 
|  | m_storage.resize(rows*cols, rows, cols); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** Resizes \c *this to a vector of length \a size | 
|  | * | 
|  | * \only_for_vectors. This method does not work for | 
|  | * partially dynamic matrices when the static dimension is anything other | 
|  | * than 1. For example it will not work with Matrix<double, 2, Dynamic>. | 
|  | * | 
|  | * Example: \include Matrix_resize_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_int.out | 
|  | * | 
|  | * \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline void resize(Index size) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase) | 
|  | eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0); | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | bool size_changed = size != this->size(); | 
|  | #endif | 
|  | if(RowsAtCompileTime == 1) | 
|  | m_storage.resize(size, 1, size); | 
|  | else | 
|  | m_storage.resize(size, size, 1); | 
|  | #ifdef EIGEN_INITIALIZE_COEFFS | 
|  | if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix, changing only the number of columns. For the parameter of type NoChange_t, just pass the special value \c NoChange | 
|  | * as in the example below. | 
|  | * | 
|  | * Example: \include Matrix_resize_NoChange_int.cpp | 
|  | * Output: \verbinclude Matrix_resize_NoChange_int.out | 
|  | * | 
|  | * \sa resize(Index,Index) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline void resize(NoChange_t, Index cols) | 
|  | { | 
|  | resize(rows(), cols); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix, changing only the number of rows. For the parameter of type NoChange_t, just pass the special value \c NoChange | 
|  | * as in the example below. | 
|  | * | 
|  | * Example: \include Matrix_resize_int_NoChange.cpp | 
|  | * Output: \verbinclude Matrix_resize_int_NoChange.out | 
|  | * | 
|  | * \sa resize(Index,Index) | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | inline void resize(Index rows, NoChange_t) | 
|  | { | 
|  | resize(rows, cols()); | 
|  | } | 
|  |  | 
|  | /** Resizes \c *this to have the same dimensions as \a other. | 
|  | * Takes care of doing all the checking that's needed. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other) | 
|  | { | 
|  | const OtherDerived& other = _other.derived(); | 
|  | internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols()); | 
|  | const Index othersize = other.rows()*other.cols(); | 
|  | if(RowsAtCompileTime == 1) | 
|  | { | 
|  | eigen_assert(other.rows() == 1 || other.cols() == 1); | 
|  | resize(1, othersize); | 
|  | } | 
|  | else if(ColsAtCompileTime == 1) | 
|  | { | 
|  | eigen_assert(other.rows() == 1 || other.cols() == 1); | 
|  | resize(othersize, 1); | 
|  | } | 
|  | else resize(other.rows(), other.cols()); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * The method is intended for matrices of dynamic size. If you only want to change the number | 
|  | * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or | 
|  | * conservativeResize(Index, NoChange_t). | 
|  | * | 
|  | * Matrices are resized relative to the top-left element. In case values need to be | 
|  | * appended to the matrix they will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols) | 
|  | { | 
|  | internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * As opposed to conservativeResize(Index rows, Index cols), this version leaves | 
|  | * the number of columns unchanged. | 
|  | * | 
|  | * In case the matrix is growing, new rows will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t) | 
|  | { | 
|  | // Note: see the comment in conservativeResize(Index,Index) | 
|  | conservativeResize(rows, cols()); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols while leaving old values untouched. | 
|  | * | 
|  | * As opposed to conservativeResize(Index rows, Index cols), this version leaves | 
|  | * the number of rows unchanged. | 
|  | * | 
|  | * In case the matrix is growing, new columns will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols) | 
|  | { | 
|  | // Note: see the comment in conservativeResize(Index,Index) | 
|  | conservativeResize(rows(), cols); | 
|  | } | 
|  |  | 
|  | /** Resizes the vector to \a size while retaining old values. | 
|  | * | 
|  | * \only_for_vectors. This method does not work for | 
|  | * partially dynamic matrices when the static dimension is anything other | 
|  | * than 1. For example it will not work with Matrix<double, 2, Dynamic>. | 
|  | * | 
|  | * When values are appended, they will be uninitialized. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void conservativeResize(Index size) | 
|  | { | 
|  | internal::conservative_resize_like_impl<Derived>::run(*this, size); | 
|  | } | 
|  |  | 
|  | /** Resizes the matrix to \a rows x \a cols of \c other, while leaving old values untouched. | 
|  | * | 
|  | * The method is intended for matrices of dynamic size. If you only want to change the number | 
|  | * of rows and/or of columns, you can use conservativeResize(NoChange_t, Index) or | 
|  | * conservativeResize(Index, NoChange_t). | 
|  | * | 
|  | * Matrices are resized relative to the top-left element. In case values need to be | 
|  | * appended to the matrix they will copied from \c other. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other); | 
|  | } | 
|  |  | 
|  | /** This is a special case of the templated operator=. Its purpose is to | 
|  | * prevent a default operator= from hiding the templated operator=. | 
|  | */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other) | 
|  | { | 
|  | return _set(other); | 
|  | } | 
|  |  | 
|  | /** \sa MatrixBase::lazyAssign() */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | _resize_to_match(other); | 
|  | return Base::lazyAssign(other.derived()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func) | 
|  | { | 
|  | resize(func.rows(), func.cols()); | 
|  | return Base::operator=(func); | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase() : m_storage() | 
|  | { | 
|  | //       _check_template_params(); | 
|  | //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | // FIXME is it still needed ? | 
|  | /** \internal */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert) | 
|  | : m_storage(internal::constructor_without_unaligned_array_assert()) | 
|  | { | 
|  | //       _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef EIGEN_HAVE_RVALUE_REFERENCES | 
|  | EIGEN_DEVICE_FUNC | 
|  | PlainObjectBase(PlainObjectBase&& other) | 
|  | : m_storage( std::move(other.m_storage) ) | 
|  | { | 
|  | } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | PlainObjectBase& operator=(PlainObjectBase&& other) | 
|  | { | 
|  | using std::swap; | 
|  | swap(m_storage, other.m_storage); | 
|  | return *this; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** Copy constructor */ | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other) | 
|  | : Base(), m_storage(other.m_storage) { } | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols) | 
|  | : m_storage(size, rows, cols) | 
|  | { | 
|  | //       _check_template_params(); | 
|  | //       EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED | 
|  | } | 
|  |  | 
|  | /** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&) | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other) | 
|  | { | 
|  | _resize_to_match(other); | 
|  | Base::operator=(other.derived()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other) | 
|  | : m_storage() | 
|  | { | 
|  | _check_template_params(); | 
|  | resizeLike(other); | 
|  | _set_noalias(other); | 
|  | } | 
|  |  | 
|  | /** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other) | 
|  | : m_storage() | 
|  | { | 
|  | _check_template_params(); | 
|  | resizeLike(other); | 
|  | *this = other.derived(); | 
|  | } | 
|  | /** \brief Copy constructor with in-place evaluation */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | _check_template_params(); | 
|  | // FIXME this does not automatically transpose vectors if necessary | 
|  | resize(other.rows(), other.cols()); | 
|  | other.evalTo(this->derived()); | 
|  | } | 
|  |  | 
|  | /** \name Map | 
|  | * These are convenience functions returning Map objects. The Map() static functions return unaligned Map objects, | 
|  | * while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned | 
|  | * \a data pointers. | 
|  | * | 
|  | * \see class Map | 
|  | */ | 
|  | //@{ | 
|  | static inline ConstMapType Map(const Scalar* data) | 
|  | { return ConstMapType(data); } | 
|  | static inline MapType Map(Scalar* data) | 
|  | { return MapType(data); } | 
|  | static inline ConstMapType Map(const Scalar* data, Index size) | 
|  | { return ConstMapType(data, size); } | 
|  | static inline MapType Map(Scalar* data, Index size) | 
|  | { return MapType(data, size); } | 
|  | static inline ConstMapType Map(const Scalar* data, Index rows, Index cols) | 
|  | { return ConstMapType(data, rows, cols); } | 
|  | static inline MapType Map(Scalar* data, Index rows, Index cols) | 
|  | { return MapType(data, rows, cols); } | 
|  |  | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data) | 
|  | { return ConstAlignedMapType(data); } | 
|  | static inline AlignedMapType MapAligned(Scalar* data) | 
|  | { return AlignedMapType(data); } | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data, Index size) | 
|  | { return ConstAlignedMapType(data, size); } | 
|  | static inline AlignedMapType MapAligned(Scalar* data, Index size) | 
|  | { return AlignedMapType(data, size); } | 
|  | static inline ConstAlignedMapType MapAligned(const Scalar* data, Index rows, Index cols) | 
|  | { return ConstAlignedMapType(data, rows, cols); } | 
|  | static inline AlignedMapType MapAligned(Scalar* data, Index rows, Index cols) | 
|  | { return AlignedMapType(data, rows, cols); } | 
|  |  | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedMapType<Stride<Outer, Inner> >::type(data, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, size, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index size, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedMapType<Stride<Outer, Inner> >::type(data, size, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstMapType<Stride<Outer, Inner> >::type Map(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedMapType<Stride<Outer, Inner> >::type Map(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } | 
|  |  | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index size, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index size, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, size, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type MapAligned(const Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedConstAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } | 
|  | template<int Outer, int Inner> | 
|  | static inline typename StridedAlignedMapType<Stride<Outer, Inner> >::type MapAligned(Scalar* data, Index rows, Index cols, const Stride<Outer, Inner>& stride) | 
|  | { return typename StridedAlignedMapType<Stride<Outer, Inner> >::type(data, rows, cols, stride); } | 
|  | //@} | 
|  |  | 
|  | using Base::setConstant; | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& value); | 
|  | EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& value); | 
|  |  | 
|  | using Base::setZero; | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(Index size); | 
|  | EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols); | 
|  |  | 
|  | using Base::setOnes; | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(Index size); | 
|  | EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols); | 
|  |  | 
|  | using Base::setRandom; | 
|  | Derived& setRandom(Index size); | 
|  | Derived& setRandom(Index rows, Index cols); | 
|  |  | 
|  | #ifdef EIGEN_PLAINOBJECTBASE_PLUGIN | 
|  | #include EIGEN_PLAINOBJECTBASE_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | /** \internal Resizes *this in preparation for assigning \a other to it. | 
|  | * Takes care of doing all the checking that's needed. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other) | 
|  | { | 
|  | #ifdef EIGEN_NO_AUTOMATIC_RESIZING | 
|  | eigen_assert((this->size()==0 || (IsVectorAtCompileTime ? (this->size() == other.size()) | 
|  | : (rows() == other.rows() && cols() == other.cols()))) | 
|  | && "Size mismatch. Automatic resizing is disabled because EIGEN_NO_AUTOMATIC_RESIZING is defined"); | 
|  | EIGEN_ONLY_USED_FOR_DEBUG(other); | 
|  | #else | 
|  | resizeLike(other); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * \brief Copies the value of the expression \a other into \c *this with automatic resizing. | 
|  | * | 
|  | * *this might be resized to match the dimensions of \a other. If *this was a null matrix (not already initialized), | 
|  | * it will be initialized. | 
|  | * | 
|  | * Note that copying a row-vector into a vector (and conversely) is allowed. | 
|  | * The resizing, if any, is then done in the appropriate way so that row-vectors | 
|  | * remain row-vectors and vectors remain vectors. | 
|  | * | 
|  | * \sa operator=(const MatrixBase<OtherDerived>&), _set_noalias() | 
|  | * | 
|  | * \internal | 
|  | */ | 
|  | // aliasing is dealt once in internall::call_assignment | 
|  | // so at this stage we have to assume aliasing... and resising has to be done later. | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | internal::call_assignment(this->derived(), other.derived()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | /** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which | 
|  | * is the case when creating a new matrix) so one can enforce lazy evaluation. | 
|  | * | 
|  | * \sa operator=(const MatrixBase<OtherDerived>&), _set() | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | // I don't think we need this resize call since the lazyAssign will anyways resize | 
|  | // and lazyAssign will be called by the assign selector. | 
|  | //_resize_to_match(other); | 
|  | // the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because | 
|  | // it wouldn't allow to copy a row-vector into a column-vector. | 
|  | internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar>()); | 
|  | return this->derived(); | 
|  | } | 
|  |  | 
|  | template<typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) && | 
|  | bool(NumTraits<T1>::IsInteger), | 
|  | FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) | 
|  | resize(rows,cols); | 
|  | } | 
|  |  | 
|  | template<typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init2(const Scalar& val0, const Scalar& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) | 
|  | m_storage.data()[0] = val0; | 
|  | m_storage.data()[1] = val1; | 
|  | } | 
|  |  | 
|  | template<typename T0, typename T1> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1, | 
|  | typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value) | 
|  | && (internal::is_same<T0,Index>::value) | 
|  | && (internal::is_same<T1,Index>::value) | 
|  | && Base::SizeAtCompileTime==2,T1>::type* = 0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2) | 
|  | m_storage.data()[0] = Scalar(val0); | 
|  | m_storage.data()[1] = Scalar(val1); | 
|  | } | 
|  |  | 
|  | // The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array, | 
|  | // then the argument is meant to be the size of the object. | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if<    (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value) | 
|  | && ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0) | 
|  | { | 
|  | // NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument. | 
|  | const bool is_integer = NumTraits<T>::IsInteger; | 
|  | EIGEN_STATIC_ASSERT(is_integer, | 
|  | FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED) | 
|  | resize(size); | 
|  | } | 
|  |  | 
|  | // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted) | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) | 
|  | m_storage.data()[0] = val0; | 
|  | } | 
|  |  | 
|  | // We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type) | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const Index& val0, | 
|  | typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value) | 
|  | && (internal::is_same<Index,T>::value) | 
|  | && Base::SizeAtCompileTime==1 | 
|  | && internal::is_convertible<T, Scalar>::value,T*>::type* = 0) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1) | 
|  | m_storage.data()[0] = Scalar(val0); | 
|  | } | 
|  |  | 
|  | // Initialize a fixed size matrix from a pointer to raw data | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const Scalar* data){ | 
|  | this->_set_noalias(ConstMapType(data)); | 
|  | } | 
|  |  | 
|  | // Initialize an arbitrary matrix from a dense expression | 
|  | template<typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){ | 
|  | this->_set_noalias(other); | 
|  | } | 
|  |  | 
|  | // Initialize an arbitrary matrix from a generic Eigen expression | 
|  | template<typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){ | 
|  | this->derived() = other; | 
|  | } | 
|  |  | 
|  | template<typename T, typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | resize(other.rows(), other.cols()); | 
|  | other.evalTo(this->derived()); | 
|  | } | 
|  |  | 
|  | template<typename T, typename OtherDerived, int ColsAtCompileTime> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r) | 
|  | { | 
|  | this->derived() = r; | 
|  | } | 
|  |  | 
|  | // For fixed -size arrays: | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const Scalar& val0, | 
|  | typename internal::enable_if<    Base::SizeAtCompileTime!=Dynamic | 
|  | && Base::SizeAtCompileTime!=1 | 
|  | && internal::is_convertible<T, Scalar>::value | 
|  | && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0) | 
|  | { | 
|  | Base::setConstant(val0); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | EIGEN_DEVICE_FUNC | 
|  | EIGEN_STRONG_INLINE void _init1(const Index& val0, | 
|  | typename internal::enable_if<    (!internal::is_same<Index,Scalar>::value) | 
|  | && (internal::is_same<Index,T>::value) | 
|  | && Base::SizeAtCompileTime!=Dynamic | 
|  | && Base::SizeAtCompileTime!=1 | 
|  | && internal::is_convertible<T, Scalar>::value | 
|  | && internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0) | 
|  | { | 
|  | Base::setConstant(val0); | 
|  | } | 
|  |  | 
|  | template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> | 
|  | friend struct internal::matrix_swap_impl; | 
|  |  | 
|  | public: | 
|  |  | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | /** \internal | 
|  | * \brief Override DenseBase::swap() since for dynamic-sized matrices | 
|  | * of same type it is enough to swap the data pointers. | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void swap(DenseBase<OtherDerived> & other) | 
|  | { | 
|  | enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic }; | 
|  | internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived()); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \brief const version forwarded to DenseBase::swap | 
|  | */ | 
|  | template<typename OtherDerived> | 
|  | EIGEN_DEVICE_FUNC | 
|  | void swap(DenseBase<OtherDerived> const & other) | 
|  | { Base::swap(other.derived()); } | 
|  |  | 
|  | EIGEN_DEVICE_FUNC | 
|  | static EIGEN_STRONG_INLINE void _check_template_params() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor) | 
|  | && EIGEN_IMPLIES(MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1, (Options&RowMajor)==0) | 
|  | && ((RowsAtCompileTime == Dynamic) || (RowsAtCompileTime >= 0)) | 
|  | && ((ColsAtCompileTime == Dynamic) || (ColsAtCompileTime >= 0)) | 
|  | && ((MaxRowsAtCompileTime == Dynamic) || (MaxRowsAtCompileTime >= 0)) | 
|  | && ((MaxColsAtCompileTime == Dynamic) || (MaxColsAtCompileTime >= 0)) | 
|  | && (MaxRowsAtCompileTime == RowsAtCompileTime || RowsAtCompileTime==Dynamic) | 
|  | && (MaxColsAtCompileTime == ColsAtCompileTime || ColsAtCompileTime==Dynamic) | 
|  | && (Options & (DontAlign|RowMajor)) == Options), | 
|  | INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | } | 
|  |  | 
|  | enum { IsPlainObjectBase = 1 }; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template <typename Derived, typename OtherDerived, bool IsVector> | 
|  | struct conservative_resize_like_impl | 
|  | { | 
|  | static void run(DenseBase<Derived>& _this, Index rows, Index cols) | 
|  | { | 
|  | if (_this.rows() == rows && _this.cols() == cols) return; | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) | 
|  |  | 
|  | if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows | 
|  | (!Derived::IsRowMajor && _this.rows() == rows) )  // column-major and we change only the number of columns | 
|  | { | 
|  | internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols); | 
|  | _this.derived().m_storage.conservativeResize(rows*cols,rows,cols); | 
|  | } | 
|  | else | 
|  | { | 
|  | // The storage order does not allow us to use reallocation. | 
|  | typename Derived::PlainObject tmp(rows,cols); | 
|  | const Index common_rows = (std::min)(rows, _this.rows()); | 
|  | const Index common_cols = (std::min)(cols, _this.cols()); | 
|  | tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); | 
|  | _this.derived().swap(tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; | 
|  |  | 
|  | // Note: Here is space for improvement. Basically, for conservativeResize(Index,Index), | 
|  | // neither RowsAtCompileTime or ColsAtCompileTime must be Dynamic. If only one of the | 
|  | // dimensions is dynamic, one could use either conservativeResize(Index rows, NoChange_t) or | 
|  | // conservativeResize(NoChange_t, Index cols). For these methods new static asserts like | 
|  | // EIGEN_STATIC_ASSERT_DYNAMIC_ROWS and EIGEN_STATIC_ASSERT_DYNAMIC_COLS would be good. | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(Derived) | 
|  | EIGEN_STATIC_ASSERT_DYNAMIC_SIZE(OtherDerived) | 
|  |  | 
|  | if ( ( Derived::IsRowMajor && _this.cols() == other.cols()) || // row-major and we change only the number of rows | 
|  | (!Derived::IsRowMajor && _this.rows() == other.rows()) )  // column-major and we change only the number of columns | 
|  | { | 
|  | const Index new_rows = other.rows() - _this.rows(); | 
|  | const Index new_cols = other.cols() - _this.cols(); | 
|  | _this.derived().m_storage.conservativeResize(other.size(),other.rows(),other.cols()); | 
|  | if (new_rows>0) | 
|  | _this.bottomRightCorner(new_rows, other.cols()) = other.bottomRows(new_rows); | 
|  | else if (new_cols>0) | 
|  | _this.bottomRightCorner(other.rows(), new_cols) = other.rightCols(new_cols); | 
|  | } | 
|  | else | 
|  | { | 
|  | // The storage order does not allow us to use reallocation. | 
|  | typename Derived::PlainObject tmp(other); | 
|  | const Index common_rows = (std::min)(tmp.rows(), _this.rows()); | 
|  | const Index common_cols = (std::min)(tmp.cols(), _this.cols()); | 
|  | tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols); | 
|  | _this.derived().swap(tmp); | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Here, the specialization for vectors inherits from the general matrix case | 
|  | // to allow calling .conservativeResize(rows,cols) on vectors. | 
|  | template <typename Derived, typename OtherDerived> | 
|  | struct conservative_resize_like_impl<Derived,OtherDerived,true> | 
|  | : conservative_resize_like_impl<Derived,OtherDerived,false> | 
|  | { | 
|  | using conservative_resize_like_impl<Derived,OtherDerived,false>::run; | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, Index size) | 
|  | { | 
|  | const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size; | 
|  | const Index new_cols = Derived::RowsAtCompileTime==1 ? size : 1; | 
|  | _this.derived().m_storage.conservativeResize(size,new_rows,new_cols); | 
|  | } | 
|  |  | 
|  | static void run(DenseBase<Derived>& _this, const DenseBase<OtherDerived>& other) | 
|  | { | 
|  | if (_this.rows() == other.rows() && _this.cols() == other.cols()) return; | 
|  |  | 
|  | const Index num_new_elements = other.size() - _this.size(); | 
|  |  | 
|  | const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : other.rows(); | 
|  | const Index new_cols = Derived::RowsAtCompileTime==1 ? other.cols() : 1; | 
|  | _this.derived().m_storage.conservativeResize(other.size(),new_rows,new_cols); | 
|  |  | 
|  | if (num_new_elements > 0) | 
|  | _this.tail(num_new_elements) = other.tail(num_new_elements); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> | 
|  | struct matrix_swap_impl | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void run(MatrixTypeA& a, MatrixTypeB& b) | 
|  | { | 
|  | a.base().swap(b); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename MatrixTypeA, typename MatrixTypeB> | 
|  | struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true> | 
|  | { | 
|  | EIGEN_DEVICE_FUNC | 
|  | static inline void run(MatrixTypeA& a, MatrixTypeB& b) | 
|  | { | 
|  | static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_DENSESTORAGEBASE_H |