|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> | 
|  | // Copyright (C) 2010 Hauke Heibel <hauke.heibel@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_TRANSFORM_H | 
|  | #define EIGEN_TRANSFORM_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<typename Transform> | 
|  | struct transform_traits | 
|  | { | 
|  | enum | 
|  | { | 
|  | Dim = Transform::Dim, | 
|  | HDim = Transform::HDim, | 
|  | Mode = Transform::Mode, | 
|  | IsProjective = (int(Mode)==int(Projective)) | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template< typename TransformType, | 
|  | typename MatrixType, | 
|  | int Case = transform_traits<TransformType>::IsProjective ? 0 | 
|  | : int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1 | 
|  | : 2> | 
|  | struct transform_right_product_impl; | 
|  |  | 
|  | template< typename Other, | 
|  | int Mode, | 
|  | int Options, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct transform_left_product_impl; | 
|  |  | 
|  | template< typename Lhs, | 
|  | typename Rhs, | 
|  | bool AnyProjective = | 
|  | transform_traits<Lhs>::IsProjective || | 
|  | transform_traits<Rhs>::IsProjective> | 
|  | struct transform_transform_product_impl; | 
|  |  | 
|  | template< typename Other, | 
|  | int Mode, | 
|  | int Options, | 
|  | int Dim, | 
|  | int HDim, | 
|  | int OtherRows=Other::RowsAtCompileTime, | 
|  | int OtherCols=Other::ColsAtCompileTime> | 
|  | struct transform_construct_from_matrix; | 
|  |  | 
|  | template<typename TransformType> struct transform_take_affine_part; | 
|  |  | 
|  | template<typename _Scalar, int _Dim, int _Mode, int _Options> | 
|  | struct traits<Transform<_Scalar,_Dim,_Mode,_Options> > | 
|  | { | 
|  | typedef _Scalar Scalar; | 
|  | typedef Eigen::Index StorageIndex; | 
|  | typedef Dense StorageKind; | 
|  | enum { | 
|  | Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1, | 
|  | RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim, | 
|  | ColsAtCompileTime = Dim1, | 
|  | MaxRowsAtCompileTime = RowsAtCompileTime, | 
|  | MaxColsAtCompileTime = ColsAtCompileTime, | 
|  | Flags = 0 | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template<int Mode> struct transform_make_affine; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | /** \geometry_module \ingroup Geometry_Module | 
|  | * | 
|  | * \class Transform | 
|  | * | 
|  | * \brief Represents an homogeneous transformation in a N dimensional space | 
|  | * | 
|  | * \tparam _Scalar the scalar type, i.e., the type of the coefficients | 
|  | * \tparam _Dim the dimension of the space | 
|  | * \tparam _Mode the type of the transformation. Can be: | 
|  | *              - #Affine: the transformation is stored as a (Dim+1)^2 matrix, | 
|  | *                         where the last row is assumed to be [0 ... 0 1]. | 
|  | *              - #AffineCompact: the transformation is stored as a (Dim)x(Dim+1) matrix. | 
|  | *              - #Projective: the transformation is stored as a (Dim+1)^2 matrix | 
|  | *                             without any assumption. | 
|  | * \tparam _Options has the same meaning as in class Matrix. It allows to specify DontAlign and/or RowMajor. | 
|  | *                  These Options are passed directly to the underlying matrix type. | 
|  | * | 
|  | * The homography is internally represented and stored by a matrix which | 
|  | * is available through the matrix() method. To understand the behavior of | 
|  | * this class you have to think a Transform object as its internal | 
|  | * matrix representation. The chosen convention is right multiply: | 
|  | * | 
|  | * \code v' = T * v \endcode | 
|  | * | 
|  | * Therefore, an affine transformation matrix M is shaped like this: | 
|  | * | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * linear & translation\\ | 
|  | * 0 ... 0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * Note that for a projective transformation the last row can be anything, | 
|  | * and then the interpretation of different parts might be sightly different. | 
|  | * | 
|  | * However, unlike a plain matrix, the Transform class provides many features | 
|  | * simplifying both its assembly and usage. In particular, it can be composed | 
|  | * with any other transformations (Transform,Translation,RotationBase,Matrix) | 
|  | * and can be directly used to transform implicit homogeneous vectors. All these | 
|  | * operations are handled via the operator*. For the composition of transformations, | 
|  | * its principle consists to first convert the right/left hand sides of the product | 
|  | * to a compatible (Dim+1)^2 matrix and then perform a pure matrix product. | 
|  | * Of course, internally, operator* tries to perform the minimal number of operations | 
|  | * according to the nature of each terms. Likewise, when applying the transform | 
|  | * to non homogeneous vectors, the latters are automatically promoted to homogeneous | 
|  | * one before doing the matrix product. The convertions to homogeneous representations | 
|  | * are performed as follow: | 
|  | * | 
|  | * \b Translation t (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * I & t \\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Rotation R (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * R & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Linear \b Matrix L (Dim)x(Dim): | 
|  | * \f$ \left( \begin{array}{cc} | 
|  | * L & 0\\ | 
|  | * 0\,...\,0 & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Affine \b Matrix A (Dim)x(Dim+1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * A\\ | 
|  | * 0\,...\,0\,1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Column \b vector v (Dim)x(1): | 
|  | * \f$ \left( \begin{array}{c} | 
|  | * v\\ | 
|  | * 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * \b Set \b of \b column \b vectors V1...Vn (Dim)x(n): | 
|  | * \f$ \left( \begin{array}{ccc} | 
|  | * v_1 & ... & v_n\\ | 
|  | * 1 & ... & 1 | 
|  | * \end{array} \right) \f$ | 
|  | * | 
|  | * The concatenation of a Transform object with any kind of other transformation | 
|  | * always returns a Transform object. | 
|  | * | 
|  | * A little exception to the "as pure matrix product" rule is the case of the | 
|  | * transformation of non homogeneous vectors by an affine transformation. In | 
|  | * that case the last matrix row can be ignored, and the product returns non | 
|  | * homogeneous vectors. | 
|  | * | 
|  | * Since, for instance, a Dim x Dim matrix is interpreted as a linear transformation, | 
|  | * it is not possible to directly transform Dim vectors stored in a Dim x Dim matrix. | 
|  | * The solution is either to use a Dim x Dynamic matrix or explicitly request a | 
|  | * vector transformation by making the vector homogeneous: | 
|  | * \code | 
|  | * m' = T * m.colwise().homogeneous(); | 
|  | * \endcode | 
|  | * Note that there is zero overhead. | 
|  | * | 
|  | * Conversion methods from/to Qt's QMatrix and QTransform are available if the | 
|  | * preprocessor token EIGEN_QT_SUPPORT is defined. | 
|  | * | 
|  | * This class can be extended with the help of the plugin mechanism described on the page | 
|  | * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN. | 
|  | * | 
|  | * \sa class Matrix, class Quaternion | 
|  | */ | 
|  | template<typename _Scalar, int _Dim, int _Mode, int _Options> | 
|  | class Transform | 
|  | { | 
|  | public: | 
|  | EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim==Dynamic ? Dynamic : (_Dim+1)*(_Dim+1)) | 
|  | enum { | 
|  | Mode = _Mode, | 
|  | Options = _Options, | 
|  | Dim = _Dim,     ///< space dimension in which the transformation holds | 
|  | HDim = _Dim+1,  ///< size of a respective homogeneous vector | 
|  | Rows = int(Mode)==(AffineCompact) ? Dim : HDim | 
|  | }; | 
|  | /** the scalar type of the coefficients */ | 
|  | typedef _Scalar Scalar; | 
|  | typedef Eigen::Index StorageIndex; | 
|  | typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 | 
|  | /** type of the matrix used to represent the transformation */ | 
|  | typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType; | 
|  | /** constified MatrixType */ | 
|  | typedef const MatrixType ConstMatrixType; | 
|  | /** type of the matrix used to represent the linear part of the transformation */ | 
|  | typedef Matrix<Scalar,Dim,Dim,Options> LinearMatrixType; | 
|  | /** type of read/write reference to the linear part of the transformation */ | 
|  | typedef Block<MatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> LinearPart; | 
|  | /** type of read reference to the linear part of the transformation */ | 
|  | typedef const Block<ConstMatrixType,Dim,Dim,int(Mode)==(AffineCompact) && (Options&RowMajor)==0> ConstLinearPart; | 
|  | /** type of read/write reference to the affine part of the transformation */ | 
|  | typedef typename internal::conditional<int(Mode)==int(AffineCompact), | 
|  | MatrixType&, | 
|  | Block<MatrixType,Dim,HDim> >::type AffinePart; | 
|  | /** type of read reference to the affine part of the transformation */ | 
|  | typedef typename internal::conditional<int(Mode)==int(AffineCompact), | 
|  | const MatrixType&, | 
|  | const Block<const MatrixType,Dim,HDim> >::type ConstAffinePart; | 
|  | /** type of a vector */ | 
|  | typedef Matrix<Scalar,Dim,1> VectorType; | 
|  | /** type of a read/write reference to the translation part of the rotation */ | 
|  | typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart; | 
|  | /** type of a read reference to the translation part of the rotation */ | 
|  | typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart; | 
|  | /** corresponding translation type */ | 
|  | typedef Translation<Scalar,Dim> TranslationType; | 
|  |  | 
|  | // this intermediate enum is needed to avoid an ICE with gcc 3.4 and 4.0 | 
|  | enum { TransformTimeDiagonalMode = ((Mode==int(Isometry))?Affine:int(Mode)) }; | 
|  | /** The return type of the product between a diagonal matrix and a transform */ | 
|  | typedef Transform<Scalar,Dim,TransformTimeDiagonalMode> TransformTimeDiagonalReturnType; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | MatrixType m_matrix; | 
|  |  | 
|  | public: | 
|  |  | 
|  | /** Default constructor without initialization of the meaningful coefficients. | 
|  | * If Mode==Affine, then the last row is set to [0 ... 0 1] */ | 
|  | inline Transform() | 
|  | { | 
|  | check_template_params(); | 
|  | internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix); | 
|  | } | 
|  |  | 
|  | inline Transform(const Transform& other) | 
|  | { | 
|  | check_template_params(); | 
|  | m_matrix = other.m_matrix; | 
|  | } | 
|  |  | 
|  | inline explicit Transform(const TranslationType& t) | 
|  | { | 
|  | check_template_params(); | 
|  | *this = t; | 
|  | } | 
|  | inline explicit Transform(const UniformScaling<Scalar>& s) | 
|  | { | 
|  | check_template_params(); | 
|  | *this = s; | 
|  | } | 
|  | template<typename Derived> | 
|  | inline explicit Transform(const RotationBase<Derived, Dim>& r) | 
|  | { | 
|  | check_template_params(); | 
|  | *this = r; | 
|  | } | 
|  |  | 
|  | inline Transform& operator=(const Transform& other) | 
|  | { m_matrix = other.m_matrix; return *this; } | 
|  |  | 
|  | typedef internal::transform_take_affine_part<Transform> take_affine_part; | 
|  |  | 
|  | /** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline explicit Transform(const EigenBase<OtherDerived>& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|  |  | 
|  | check_template_params(); | 
|  | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */ | 
|  | template<typename OtherDerived> | 
|  | inline Transform& operator=(const EigenBase<OtherDerived>& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value), | 
|  | YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY); | 
|  |  | 
|  | internal::transform_construct_from_matrix<OtherDerived,Mode,Options,Dim,HDim>::run(this, other.derived()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<int OtherOptions> | 
|  | inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other) | 
|  | { | 
|  | check_template_params(); | 
|  | // only the options change, we can directly copy the matrices | 
|  | m_matrix = other.matrix(); | 
|  | } | 
|  |  | 
|  | template<int OtherMode,int OtherOptions> | 
|  | inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) | 
|  | { | 
|  | check_template_params(); | 
|  | // prevent conversions as: | 
|  | // Affine | AffineCompact | Isometry = Projective | 
|  | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Projective), Mode==int(Projective)), | 
|  | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|  |  | 
|  | // prevent conversions as: | 
|  | // Isometry = Affine | AffineCompact | 
|  | EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(OtherMode==int(Affine)||OtherMode==int(AffineCompact), Mode!=int(Isometry)), | 
|  | YOU_PERFORMED_AN_INVALID_TRANSFORMATION_CONVERSION) | 
|  |  | 
|  | enum { ModeIsAffineCompact = Mode == int(AffineCompact), | 
|  | OtherModeIsAffineCompact = OtherMode == int(AffineCompact) | 
|  | }; | 
|  |  | 
|  | if(ModeIsAffineCompact == OtherModeIsAffineCompact) | 
|  | { | 
|  | // We need the block expression because the code is compiled for all | 
|  | // combinations of transformations and will trigger a compile time error | 
|  | // if one tries to assign the matrices directly | 
|  | m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0); | 
|  | makeAffine(); | 
|  | } | 
|  | else if(OtherModeIsAffineCompact) | 
|  | { | 
|  | typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType; | 
|  | internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix()); | 
|  | } | 
|  | else | 
|  | { | 
|  | // here we know that Mode == AffineCompact and OtherMode != AffineCompact. | 
|  | // if OtherMode were Projective, the static assert above would already have caught it. | 
|  | // So the only possibility is that OtherMode == Affine | 
|  | linear() = other.linear(); | 
|  | translation() = other.translation(); | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Transform(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | check_template_params(); | 
|  | other.evalTo(*this); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | Transform& operator=(const ReturnByValue<OtherDerived>& other) | 
|  | { | 
|  | other.evalTo(*this); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | inline Transform(const QMatrix& other); | 
|  | inline Transform& operator=(const QMatrix& other); | 
|  | inline QMatrix toQMatrix(void) const; | 
|  | inline Transform(const QTransform& other); | 
|  | inline Transform& operator=(const QTransform& other); | 
|  | inline QTransform toQTransform(void) const; | 
|  | #endif | 
|  |  | 
|  | Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); } | 
|  | Index cols() const { return m_matrix.cols(); } | 
|  |  | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operator(Index,Index) const */ | 
|  | inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); } | 
|  | /** shortcut for m_matrix(row,col); | 
|  | * \sa MatrixBase::operator(Index,Index) */ | 
|  | inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); } | 
|  |  | 
|  | /** \returns a read-only expression of the transformation matrix */ | 
|  | inline const MatrixType& matrix() const { return m_matrix; } | 
|  | /** \returns a writable expression of the transformation matrix */ | 
|  | inline MatrixType& matrix() { return m_matrix; } | 
|  |  | 
|  | /** \returns a read-only expression of the linear part of the transformation */ | 
|  | inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); } | 
|  | /** \returns a writable expression of the linear part of the transformation */ | 
|  | inline LinearPart linear() { return LinearPart(m_matrix,0,0); } | 
|  |  | 
|  | /** \returns a read-only expression of the Dim x HDim affine part of the transformation */ | 
|  | inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); } | 
|  | /** \returns a writable expression of the Dim x HDim affine part of the transformation */ | 
|  | inline AffinePart affine() { return take_affine_part::run(m_matrix); } | 
|  |  | 
|  | /** \returns a read-only expression of the translation vector of the transformation */ | 
|  | inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); } | 
|  | /** \returns a writable expression of the translation vector of the transformation */ | 
|  | inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); } | 
|  |  | 
|  | /** \returns an expression of the product between the transform \c *this and a matrix expression \a other | 
|  | * | 
|  | * The right hand side \a other might be either: | 
|  | * \li a vector of size Dim, | 
|  | * \li an homogeneous vector of size Dim+1, | 
|  | * \li a set of vectors of size Dim x Dynamic, | 
|  | * \li a set of homogeneous vectors of size Dim+1 x Dynamic, | 
|  | * \li a linear transformation matrix of size Dim x Dim, | 
|  | * \li an affine transformation matrix of size Dim x Dim+1, | 
|  | * \li a transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | // note: this function is defined here because some compilers cannot find the respective declaration | 
|  | template<typename OtherDerived> | 
|  | EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType | 
|  | operator * (const EigenBase<OtherDerived> &other) const | 
|  | { return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); } | 
|  |  | 
|  | /** \returns the product expression of a transformation matrix \a a times a transform \a b | 
|  | * | 
|  | * The left hand side \a other might be either: | 
|  | * \li a linear transformation matrix of size Dim x Dim, | 
|  | * \li an affine transformation matrix of size Dim x Dim+1, | 
|  | * \li a general transformation matrix of size Dim+1 x Dim+1. | 
|  | */ | 
|  | template<typename OtherDerived> friend | 
|  | inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType | 
|  | operator * (const EigenBase<OtherDerived> &a, const Transform &b) | 
|  | { return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); } | 
|  |  | 
|  | /** \returns The product expression of a transform \a a times a diagonal matrix \a b | 
|  | * | 
|  | * The rhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|  | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|  | * mode is no isometry. In that case, the returned transform is an affinity. | 
|  | */ | 
|  | template<typename DiagonalDerived> | 
|  | inline const TransformTimeDiagonalReturnType | 
|  | operator * (const DiagonalBase<DiagonalDerived> &b) const | 
|  | { | 
|  | TransformTimeDiagonalReturnType res(*this); | 
|  | res.linear() *= b; | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** \returns The product expression of a diagonal matrix \a a times a transform \a b | 
|  | * | 
|  | * The lhs diagonal matrix is interpreted as an affine scaling transformation. The | 
|  | * product results in a Transform of the same type (mode) as the lhs only if the lhs | 
|  | * mode is no isometry. In that case, the returned transform is an affinity. | 
|  | */ | 
|  | template<typename DiagonalDerived> | 
|  | friend inline TransformTimeDiagonalReturnType | 
|  | operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b) | 
|  | { | 
|  | TransformTimeDiagonalReturnType res; | 
|  | res.linear().noalias() = a*b.linear(); | 
|  | res.translation().noalias() = a*b.translation(); | 
|  | if (Mode!=int(AffineCompact)) | 
|  | res.matrix().row(Dim) = b.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; } | 
|  |  | 
|  | /** Concatenates two transformations */ | 
|  | inline const Transform operator * (const Transform& other) const | 
|  | { | 
|  | return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other); | 
|  | } | 
|  |  | 
|  | #if EIGEN_COMP_ICC | 
|  | private: | 
|  | // this intermediate structure permits to workaround a bug in ICC 11: | 
|  | //   error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0> | 
|  | //             (const Eigen::Transform<double, 3, 2, 0> &) const" | 
|  | //  (the meaning of a name may have changed since the template declaration -- the type of the template is: | 
|  | // "Eigen::internal::transform_transform_product_impl<Eigen::Transform<double, 3, 32, 0>, | 
|  | //     Eigen::Transform<double, 3, Mode, Options>, <expression>>::ResultType (const Eigen::Transform<double, 3, Mode, Options> &) const") | 
|  | // | 
|  | template<int OtherMode,int OtherOptions> struct icc_11_workaround | 
|  | { | 
|  | typedef internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> > ProductType; | 
|  | typedef typename ProductType::ResultType ResultType; | 
|  | }; | 
|  |  | 
|  | public: | 
|  | /** Concatenates two different transformations */ | 
|  | template<int OtherMode,int OtherOptions> | 
|  | inline typename icc_11_workaround<OtherMode,OtherOptions>::ResultType | 
|  | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const | 
|  | { | 
|  | typedef typename icc_11_workaround<OtherMode,OtherOptions>::ProductType ProductType; | 
|  | return ProductType::run(*this,other); | 
|  | } | 
|  | #else | 
|  | /** Concatenates two different transformations */ | 
|  | template<int OtherMode,int OtherOptions> | 
|  | inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType | 
|  | operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const | 
|  | { | 
|  | return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** \sa MatrixBase::setIdentity() */ | 
|  | void setIdentity() { m_matrix.setIdentity(); } | 
|  |  | 
|  | /** | 
|  | * \brief Returns an identity transformation. | 
|  | * \todo In the future this function should be returning a Transform expression. | 
|  | */ | 
|  | static const Transform Identity() | 
|  | { | 
|  | return Transform(MatrixType::Identity()); | 
|  | } | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& scale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& prescale(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | inline Transform& scale(const Scalar& s); | 
|  | inline Transform& prescale(const Scalar& s); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& translate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename OtherDerived> | 
|  | inline Transform& pretranslate(const MatrixBase<OtherDerived> &other); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& rotate(const RotationType& rotation); | 
|  |  | 
|  | template<typename RotationType> | 
|  | inline Transform& prerotate(const RotationType& rotation); | 
|  |  | 
|  | Transform& shear(const Scalar& sx, const Scalar& sy); | 
|  | Transform& preshear(const Scalar& sx, const Scalar& sy); | 
|  |  | 
|  | inline Transform& operator=(const TranslationType& t); | 
|  | inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); } | 
|  | inline Transform operator*(const TranslationType& t) const; | 
|  |  | 
|  | inline Transform& operator=(const UniformScaling<Scalar>& t); | 
|  | inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); } | 
|  | inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const | 
|  | { | 
|  | TransformTimeDiagonalReturnType res = *this; | 
|  | res.scale(s.factor()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; } | 
|  |  | 
|  | template<typename Derived> | 
|  | inline Transform& operator=(const RotationBase<Derived,Dim>& r); | 
|  | template<typename Derived> | 
|  | inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); } | 
|  | template<typename Derived> | 
|  | inline Transform operator*(const RotationBase<Derived,Dim>& r) const; | 
|  |  | 
|  | const LinearMatrixType rotation() const; | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const; | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const; | 
|  |  | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale); | 
|  |  | 
|  | inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const; | 
|  |  | 
|  | /** \returns a const pointer to the column major internal matrix */ | 
|  | const Scalar* data() const { return m_matrix.data(); } | 
|  | /** \returns a non-const pointer to the column major internal matrix */ | 
|  | Scalar* data() { return m_matrix.data(); } | 
|  |  | 
|  | /** \returns \c *this with scalar type casted to \a NewScalarType | 
|  | * | 
|  | * Note that if \a NewScalarType is equal to the current scalar type of \c *this | 
|  | * then this function smartly returns a const reference to \c *this. | 
|  | */ | 
|  | template<typename NewScalarType> | 
|  | inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const | 
|  | { return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); } | 
|  |  | 
|  | /** Copy constructor with scalar type conversion */ | 
|  | template<typename OtherScalarType> | 
|  | inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other) | 
|  | { | 
|  | check_template_params(); | 
|  | m_matrix = other.matrix().template cast<Scalar>(); | 
|  | } | 
|  |  | 
|  | /** \returns \c true if \c *this is approximately equal to \a other, within the precision | 
|  | * determined by \a prec. | 
|  | * | 
|  | * \sa MatrixBase::isApprox() */ | 
|  | bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const | 
|  | { return m_matrix.isApprox(other.m_matrix, prec); } | 
|  |  | 
|  | /** Sets the last row to [0 ... 0 1] | 
|  | */ | 
|  | void makeAffine() | 
|  | { | 
|  | internal::transform_make_affine<int(Mode)>::run(m_matrix); | 
|  | } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|  | /** \internal | 
|  | * \returns the Dim x Dim linear part if the transformation is affine, | 
|  | *          and the HDim x Dim part for projective transformations. | 
|  | */ | 
|  | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); } | 
|  |  | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|  | /** \internal | 
|  | * \returns the translation part if the transformation is affine, | 
|  | *          and the last column for projective transformations. | 
|  | */ | 
|  | inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const | 
|  | { return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); } | 
|  |  | 
|  |  | 
|  | #ifdef EIGEN_TRANSFORM_PLUGIN | 
|  | #include EIGEN_TRANSFORM_PLUGIN | 
|  | #endif | 
|  |  | 
|  | protected: | 
|  | #ifndef EIGEN_PARSED_BY_DOXYGEN | 
|  | static EIGEN_STRONG_INLINE void check_template_params() | 
|  | { | 
|  | EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS) | 
|  | } | 
|  | #endif | 
|  |  | 
|  | }; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,Isometry> Isometry2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,Isometry> Isometry3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,Isometry> Isometry2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,Isometry> Isometry3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,Affine> Affine2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,Affine> Affine3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,Affine> Affine2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,Affine> Affine3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,AffineCompact> AffineCompact2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,AffineCompact> AffineCompact3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,AffineCompact> AffineCompact2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,AffineCompact> AffineCompact3d; | 
|  |  | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,2,Projective> Projective2f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<float,3,Projective> Projective3f; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,2,Projective> Projective2d; | 
|  | /** \ingroup Geometry_Module */ | 
|  | typedef Transform<double,3,Projective> Projective3d; | 
|  |  | 
|  | /************************** | 
|  | *** Optional QT support *** | 
|  | **************************/ | 
|  |  | 
|  | #ifdef EIGEN_QT_SUPPORT | 
|  | /** Initializes \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode,int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>::Transform(const QMatrix& other) | 
|  | { | 
|  | check_template_params(); | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QMatrix assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode,int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (Mode == int(AffineCompact)) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(); | 
|  | else | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | 0, 0, 1; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QMatrix from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * \warning this conversion might loss data if \c *this is not affine | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | QMatrix Transform<Scalar,Dim,Mode,Options>::toQMatrix(void) const | 
|  | { | 
|  | check_template_params(); | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | return QMatrix(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|  | } | 
|  |  | 
|  | /** Initializes \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode,int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>::Transform(const QTransform& other) | 
|  | { | 
|  | check_template_params(); | 
|  | *this = other; | 
|  | } | 
|  |  | 
|  | /** Set \c *this from a QTransform assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QTransform& other) | 
|  | { | 
|  | check_template_params(); | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (Mode == int(AffineCompact)) | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(); | 
|  | else | 
|  | m_matrix << other.m11(), other.m21(), other.dx(), | 
|  | other.m12(), other.m22(), other.dy(), | 
|  | other.m13(), other.m23(), other.m33(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** \returns a QTransform from \c *this assuming the dimension is 2. | 
|  | * | 
|  | * This function is available only if the token EIGEN_QT_SUPPORT is defined. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | if (Mode == int(AffineCompact)) | 
|  | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2)); | 
|  | else | 
|  | return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0), m_matrix.coeff(2,0), | 
|  | m_matrix.coeff(0,1), m_matrix.coeff(1,1), m_matrix.coeff(2,1), | 
|  | m_matrix.coeff(0,2), m_matrix.coeff(1,2), m_matrix.coeff(2,2)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********************* | 
|  | *** Procedural API *** | 
|  | *********************/ | 
|  |  | 
|  | /** Applies on the right the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa prescale() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | linearExt().noalias() = (linearExt() * other.asDiagonal()); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa prescale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | linearExt() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the non uniform scale transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \sa scale() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0)); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left a uniform scale of a factor \a c to \c *this | 
|  | * and returns a reference to \c *this. | 
|  | * \sa scale(Scalar) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | m_matrix.template topRows<Dim>() *= s; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa pretranslate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | translationExt() += linearExt() * other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the translation matrix represented by the vector \a other | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * \sa translate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename OtherDerived> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim)) | 
|  | if(int(Mode)==int(Projective)) | 
|  | affine() += other * m_matrix.row(Dim); | 
|  | else | 
|  | translation() += other; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * The template parameter \a RotationType is the type of the rotation which | 
|  | * must be known by internal::toRotationMatrix<>. | 
|  | * | 
|  | * Natively supported types includes: | 
|  | *   - any scalar (2D), | 
|  | *   - a Dim x Dim matrix expression, | 
|  | *   - a Quaternion (3D), | 
|  | *   - a AngleAxis (3D) | 
|  | * | 
|  | * This mechanism is easily extendable to support user types such as Euler angles, | 
|  | * or a pair of Quaternion for 4D rotations. | 
|  | * | 
|  | * \sa rotate(Scalar), class Quaternion, class AngleAxis, prerotate(RotationType) | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation) | 
|  | { | 
|  | linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the rotation represented by the rotation \a rotation | 
|  | * to \c *this and returns a reference to \c *this. | 
|  | * | 
|  | * See rotate() for further details. | 
|  | * | 
|  | * \sa rotate() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename RotationType> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation) | 
|  | { | 
|  | m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation) | 
|  | * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the right the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa preshear() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | VectorType tmp = linear().col(0)*sy + linear().col(1); | 
|  | linear() << linear().col(0) + linear().col(1)*sx, tmp; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /** Applies on the left the shear transformation represented | 
|  | * by the vector \a other to \c *this and returns a reference to \c *this. | 
|  | * \warning 2D only. | 
|  | * \sa shear() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE) | 
|  | EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS) | 
|  | m_matrix.template block<Dim,HDim>(0,0) = LinearMatrixType(1, sx, sy, 1) * m_matrix.template block<Dim,HDim>(0,0); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | /****************************************************** | 
|  | *** Scaling, Translation and Rotation compatibility *** | 
|  | ******************************************************/ | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t) | 
|  | { | 
|  | linear().setIdentity(); | 
|  | translation() = t.vector(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.translate(t.vector()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s) | 
|  | { | 
|  | m_matrix.setZero(); | 
|  | linear().diagonal().fill(s.factor()); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r) | 
|  | { | 
|  | linear() = internal::toRotationMatrix<Scalar,Dim>(r); | 
|  | translation().setZero(); | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename Derived> | 
|  | inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const | 
|  | { | 
|  | Transform res = *this; | 
|  | res.rotate(r.derived()); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /************************ | 
|  | *** Special functions *** | 
|  | ************************/ | 
|  |  | 
|  | /** \returns the rotation part of the transformation | 
|  | * | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), computeScalingRotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType | 
|  | Transform<Scalar,Dim,Mode,Options>::rotation() const | 
|  | { | 
|  | LinearMatrixType result; | 
|  | computeRotationScaling(&result, (LinearMatrixType*)0); | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeScalingRotation(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename RotationMatrixType, typename ScalingMatrixType> | 
|  | void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const | 
|  | { | 
|  | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); | 
|  |  | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|  | VectorType sv(svd.singularValues()); | 
|  | sv.coeffRef(0) *= x; | 
|  | if(scaling) scaling->lazyAssign(svd.matrixV() * sv.asDiagonal() * svd.matrixV().adjoint()); | 
|  | if(rotation) | 
|  | { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(0) /= x; | 
|  | rotation->lazyAssign(m * svd.matrixV().adjoint()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being | 
|  | * not necessarily positive. | 
|  | * | 
|  | * If either pointer is zero, the corresponding computation is skipped. | 
|  | * | 
|  | * | 
|  | * | 
|  | * \svd_module | 
|  | * | 
|  | * \sa computeRotationScaling(), rotation(), class SVD | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename ScalingMatrixType, typename RotationMatrixType> | 
|  | void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const | 
|  | { | 
|  | JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV); | 
|  |  | 
|  | Scalar x = (svd.matrixU() * svd.matrixV().adjoint()).determinant(); // so x has absolute value 1 | 
|  | VectorType sv(svd.singularValues()); | 
|  | sv.coeffRef(0) *= x; | 
|  | if(scaling) scaling->lazyAssign(svd.matrixU() * sv.asDiagonal() * svd.matrixU().adjoint()); | 
|  | if(rotation) | 
|  | { | 
|  | LinearMatrixType m(svd.matrixU()); | 
|  | m.col(0) /= x; | 
|  | rotation->lazyAssign(m * svd.matrixV().adjoint()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** Convenient method to set \c *this from a position, orientation and scale | 
|  | * of a 3D object. | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | template<typename PositionDerived, typename OrientationType, typename ScaleDerived> | 
|  | Transform<Scalar,Dim,Mode,Options>& | 
|  | Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position, | 
|  | const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale) | 
|  | { | 
|  | linear() = internal::toRotationMatrix<Scalar,Dim>(orientation); | 
|  | linear() *= scale.asDiagonal(); | 
|  | translation() = position; | 
|  | makeAffine(); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | template<int Mode> | 
|  | struct transform_make_affine | 
|  | { | 
|  | template<typename MatrixType> | 
|  | static void run(MatrixType &mat) | 
|  | { | 
|  | static const int Dim = MatrixType::ColsAtCompileTime-1; | 
|  | mat.template block<1,Dim>(Dim,0).setZero(); | 
|  | mat.coeffRef(Dim,Dim) = typename MatrixType::Scalar(1); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<> | 
|  | struct transform_make_affine<AffineCompact> | 
|  | { | 
|  | template<typename MatrixType> static void run(MatrixType &) { } | 
|  | }; | 
|  |  | 
|  | // selector needed to avoid taking the inverse of a 3x4 matrix | 
|  | template<typename TransformType, int Mode=TransformType::Mode> | 
|  | struct projective_transform_inverse | 
|  | { | 
|  | static inline void run(const TransformType&, TransformType&) | 
|  | {} | 
|  | }; | 
|  |  | 
|  | template<typename TransformType> | 
|  | struct projective_transform_inverse<TransformType, Projective> | 
|  | { | 
|  | static inline void run(const TransformType& m, TransformType& res) | 
|  | { | 
|  | res.matrix() = m.matrix().inverse(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  |  | 
|  | /** | 
|  | * | 
|  | * \returns the inverse transformation according to some given knowledge | 
|  | * on \c *this. | 
|  | * | 
|  | * \param hint allows to optimize the inversion process when the transformation | 
|  | * is known to be not a general transformation (optional). The possible values are: | 
|  | *  - #Projective if the transformation is not necessarily affine, i.e., if the | 
|  | *    last row is not guaranteed to be [0 ... 0 1] | 
|  | *  - #Affine if the last row can be assumed to be [0 ... 0 1] | 
|  | *  - #Isometry if the transformation is only a concatenations of translations | 
|  | *    and rotations. | 
|  | *  The default is the template class parameter \c Mode. | 
|  | * | 
|  | * \warning unless \a traits is always set to NoShear or NoScaling, this function | 
|  | * requires the generic inverse method of MatrixBase defined in the LU module. If | 
|  | * you forget to include this module, then you will get hard to debug linking errors. | 
|  | * | 
|  | * \sa MatrixBase::inverse() | 
|  | */ | 
|  | template<typename Scalar, int Dim, int Mode, int Options> | 
|  | Transform<Scalar,Dim,Mode,Options> | 
|  | Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const | 
|  | { | 
|  | Transform res; | 
|  | if (hint == Projective) | 
|  | { | 
|  | internal::projective_transform_inverse<Transform>::run(*this, res); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (hint == Isometry) | 
|  | { | 
|  | res.matrix().template topLeftCorner<Dim,Dim>() = linear().transpose(); | 
|  | } | 
|  | else if(hint&Affine) | 
|  | { | 
|  | res.matrix().template topLeftCorner<Dim,Dim>() = linear().inverse(); | 
|  | } | 
|  | else | 
|  | { | 
|  | eigen_assert(false && "Invalid transform traits in Transform::Inverse"); | 
|  | } | 
|  | // translation and remaining parts | 
|  | res.matrix().template topRightCorner<Dim,1>() | 
|  | = - res.matrix().template topLeftCorner<Dim,Dim>() * translation(); | 
|  | res.makeAffine(); // we do need this, because in the beginning res is uninitialized | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of take affine part            *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template<typename TransformType> struct transform_take_affine_part { | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef typename TransformType::AffinePart AffinePart; | 
|  | typedef typename TransformType::ConstAffinePart ConstAffinePart; | 
|  | static inline AffinePart run(MatrixType& m) | 
|  | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|  | static inline ConstAffinePart run(const MatrixType& m) | 
|  | { return m.template block<TransformType::Dim,TransformType::HDim>(0,0); } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim, int Options> | 
|  | struct transform_take_affine_part<Transform<Scalar,Dim,AffineCompact, Options> > { | 
|  | typedef typename Transform<Scalar,Dim,AffineCompact,Options>::MatrixType MatrixType; | 
|  | static inline MatrixType& run(MatrixType& m) { return m; } | 
|  | static inline const MatrixType& run(const MatrixType& m) { return m; } | 
|  | }; | 
|  |  | 
|  | /***************************************************** | 
|  | *** Specializations of construct from matrix       *** | 
|  | *****************************************************/ | 
|  |  | 
|  | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,Dim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|  | { | 
|  | transform->linear() = other; | 
|  | transform->translation().setZero(); | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|  | { | 
|  | transform->affine() = other; | 
|  | transform->makeAffine(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, Mode,Options,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,Mode,Options> *transform, const Other& other) | 
|  | { transform->matrix() = other; } | 
|  | }; | 
|  |  | 
|  | template<typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_construct_from_matrix<Other, AffineCompact,Options,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | static inline void run(Transform<typename Other::Scalar,Dim,AffineCompact,Options> *transform, const Other& other) | 
|  | { transform->matrix() = other.template block<Dim,HDim>(0,0); } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | ***   Specializations of operator* with rhs EigenBase   *** | 
|  | **********************************************************/ | 
|  |  | 
|  | template<int LhsMode,int RhsMode> | 
|  | struct transform_product_result | 
|  | { | 
|  | enum | 
|  | { | 
|  | Mode = | 
|  | (LhsMode == (int)Projective    || RhsMode == (int)Projective    ) ? Projective : | 
|  | (LhsMode == (int)Affine        || RhsMode == (int)Affine        ) ? Affine : | 
|  | (LhsMode == (int)AffineCompact || RhsMode == (int)AffineCompact ) ? AffineCompact : | 
|  | (LhsMode == (int)Isometry      || RhsMode == (int)Isometry      ) ? Isometry : Projective | 
|  | }; | 
|  | }; | 
|  |  | 
|  | template< typename TransformType, typename MatrixType > | 
|  | struct transform_right_product_impl< TransformType, MatrixType, 0 > | 
|  | { | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|  | { | 
|  | return T.matrix() * other; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template< typename TransformType, typename MatrixType > | 
|  | struct transform_right_product_impl< TransformType, MatrixType, 1 > | 
|  | { | 
|  | enum { | 
|  | Dim = TransformType::Dim, | 
|  | HDim = TransformType::HDim, | 
|  | OtherRows = MatrixType::RowsAtCompileTime, | 
|  | OtherCols = MatrixType::ColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(OtherRows==HDim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|  |  | 
|  | typedef Block<ResultType, Dim, OtherCols, int(MatrixType::RowsAtCompileTime)==Dim> TopLeftLhs; | 
|  |  | 
|  | ResultType res(other.rows(),other.cols()); | 
|  | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() = T.affine() * other; | 
|  | res.row(OtherRows-1) = other.row(OtherRows-1); | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template< typename TransformType, typename MatrixType > | 
|  | struct transform_right_product_impl< TransformType, MatrixType, 2 > | 
|  | { | 
|  | enum { | 
|  | Dim = TransformType::Dim, | 
|  | HDim = TransformType::HDim, | 
|  | OtherRows = MatrixType::RowsAtCompileTime, | 
|  | OtherCols = MatrixType::ColsAtCompileTime | 
|  | }; | 
|  |  | 
|  | typedef typename MatrixType::PlainObject ResultType; | 
|  |  | 
|  | static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other) | 
|  | { | 
|  | EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES); | 
|  |  | 
|  | typedef Block<ResultType, Dim, OtherCols, true> TopLeftLhs; | 
|  | ResultType res(Replicate<typename TransformType::ConstTranslationPart, 1, OtherCols>(T.translation(),1,other.cols())); | 
|  | TopLeftLhs(res, 0, 0, Dim, other.cols()).noalias() += T.linear() * other; | 
|  |  | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | ***   Specializations of operator* with lhs EigenBase   *** | 
|  | **********************************************************/ | 
|  |  | 
|  | // generic HDim x HDim matrix * T => Projective | 
|  | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { return ResultType(other * tr.matrix()); } | 
|  | }; | 
|  |  | 
|  | // generic HDim x HDim matrix * AffineCompact => Projective | 
|  | template<typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, HDim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef Transform<typename Other::Scalar,Dim,Projective,Options> ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<HDim,Dim>(0,0) * tr.matrix(); | 
|  | res.matrix().col(Dim) += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * T | 
|  | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.affine().noalias() = other * tr.matrix(); | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // affine matrix * AffineCompact | 
|  | template<typename Other, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other,AffineCompact,Options,Dim,HDim, Dim,HDim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,AffineCompact,Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other,const TransformType& tr) | 
|  | { | 
|  | ResultType res; | 
|  | res.matrix().noalias() = other.template block<Dim,Dim>(0,0) * tr.matrix(); | 
|  | res.translation() += other.col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // linear matrix * T | 
|  | template<typename Other,int Mode, int Options, int Dim, int HDim> | 
|  | struct transform_left_product_impl<Other,Mode,Options,Dim,HDim, Dim,Dim> | 
|  | { | 
|  | typedef Transform<typename Other::Scalar,Dim,Mode,Options> TransformType; | 
|  | typedef typename TransformType::MatrixType MatrixType; | 
|  | typedef TransformType ResultType; | 
|  | static ResultType run(const Other& other, const TransformType& tr) | 
|  | { | 
|  | TransformType res; | 
|  | if(Mode!=int(AffineCompact)) | 
|  | res.matrix().row(Dim) = tr.matrix().row(Dim); | 
|  | res.matrix().template topRows<Dim>().noalias() | 
|  | = other * tr.matrix().template topRows<Dim>(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /********************************************************** | 
|  | *** Specializations of operator* with another Transform *** | 
|  | **********************************************************/ | 
|  |  | 
|  | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,false > | 
|  | { | 
|  | enum { ResultMode = transform_product_result<LhsMode,RhsMode>::Mode }; | 
|  | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; | 
|  | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; | 
|  | typedef Transform<Scalar,Dim,ResultMode,LhsOptions> ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | ResultType res; | 
|  | res.linear() = lhs.linear() * rhs.linear(); | 
|  | res.translation() = lhs.linear() * rhs.translation() + lhs.translation(); | 
|  | res.makeAffine(); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim, int LhsMode, int LhsOptions, int RhsMode, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar,Dim,LhsMode,LhsOptions>,Transform<Scalar,Dim,RhsMode,RhsOptions>,true > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,LhsMode,LhsOptions> Lhs; | 
|  | typedef Transform<Scalar,Dim,RhsMode,RhsOptions> Rhs; | 
|  | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | return ResultType( lhs.matrix() * rhs.matrix() ); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar,Dim,AffineCompact,LhsOptions>,Transform<Scalar,Dim,Projective,RhsOptions>,true > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,AffineCompact,LhsOptions> Lhs; | 
|  | typedef Transform<Scalar,Dim,Projective,RhsOptions> Rhs; | 
|  | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | ResultType res; | 
|  | res.matrix().template topRows<Dim>() = lhs.matrix() * rhs.matrix(); | 
|  | res.matrix().row(Dim) = rhs.matrix().row(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | template<typename Scalar, int Dim, int LhsOptions, int RhsOptions> | 
|  | struct transform_transform_product_impl<Transform<Scalar,Dim,Projective,LhsOptions>,Transform<Scalar,Dim,AffineCompact,RhsOptions>,true > | 
|  | { | 
|  | typedef Transform<Scalar,Dim,Projective,LhsOptions> Lhs; | 
|  | typedef Transform<Scalar,Dim,AffineCompact,RhsOptions> Rhs; | 
|  | typedef Transform<Scalar,Dim,Projective> ResultType; | 
|  | static ResultType run(const Lhs& lhs, const Rhs& rhs) | 
|  | { | 
|  | ResultType res(lhs.matrix().template leftCols<Dim>() * rhs.matrix()); | 
|  | res.matrix().col(Dim) += lhs.matrix().col(Dim); | 
|  | return res; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace internal | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_TRANSFORM_H |