|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2012 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  |  | 
|  | /* | 
|  |  | 
|  | NOTE: thes functions vave been adapted from the LDL library: | 
|  |  | 
|  | LDL Copyright (c) 2005 by Timothy A. Davis.  All Rights Reserved. | 
|  |  | 
|  | LDL License: | 
|  |  | 
|  | Your use or distribution of LDL or any modified version of | 
|  | LDL implies that you agree to this License. | 
|  |  | 
|  | This library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Lesser General Public | 
|  | License as published by the Free Software Foundation; either | 
|  | version 2.1 of the License, or (at your option) any later version. | 
|  |  | 
|  | This library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Lesser General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Lesser General Public | 
|  | License along with this library; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 | 
|  | USA | 
|  |  | 
|  | Permission is hereby granted to use or copy this program under the | 
|  | terms of the GNU LGPL, provided that the Copyright, this License, | 
|  | and the Availability of the original version is retained on all copies. | 
|  | User documentation of any code that uses this code or any modified | 
|  | version of this code must cite the Copyright, this License, the | 
|  | Availability note, and "Used by permission." Permission to modify | 
|  | the code and to distribute modified code is granted, provided the | 
|  | Copyright, this License, and the Availability note are retained, | 
|  | and a notice that the code was modified is included. | 
|  | */ | 
|  |  | 
|  | #include "../Core/util/NonMPL2.h" | 
|  |  | 
|  | #ifndef EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H | 
|  | #define EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | template<typename Derived> | 
|  | void SimplicialCholeskyBase<Derived>::analyzePattern_preordered(const CholMatrixType& ap, bool doLDLT) | 
|  | { | 
|  | const StorageIndex size = StorageIndex(ap.rows()); | 
|  | m_matrix.resize(size, size); | 
|  | m_parent.resize(size); | 
|  | m_nonZerosPerCol.resize(size); | 
|  |  | 
|  | ei_declare_aligned_stack_constructed_variable(StorageIndex, tags, size, 0); | 
|  |  | 
|  | for(StorageIndex k = 0; k < size; ++k) | 
|  | { | 
|  | /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */ | 
|  | m_parent[k] = -1;             /* parent of k is not yet known */ | 
|  | tags[k] = k;                  /* mark node k as visited */ | 
|  | m_nonZerosPerCol[k] = 0;      /* count of nonzeros in column k of L */ | 
|  | for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) | 
|  | { | 
|  | StorageIndex i = it.index(); | 
|  | if(i < k) | 
|  | { | 
|  | /* follow path from i to root of etree, stop at flagged node */ | 
|  | for(; tags[i] != k; i = m_parent[i]) | 
|  | { | 
|  | /* find parent of i if not yet determined */ | 
|  | if (m_parent[i] == -1) | 
|  | m_parent[i] = k; | 
|  | m_nonZerosPerCol[i]++;        /* L (k,i) is nonzero */ | 
|  | tags[i] = k;                  /* mark i as visited */ | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* construct Lp index array from m_nonZerosPerCol column counts */ | 
|  | StorageIndex* Lp = m_matrix.outerIndexPtr(); | 
|  | Lp[0] = 0; | 
|  | for(StorageIndex k = 0; k < size; ++k) | 
|  | Lp[k+1] = Lp[k] + m_nonZerosPerCol[k] + (doLDLT ? 0 : 1); | 
|  |  | 
|  | m_matrix.resizeNonZeros(Lp[size]); | 
|  |  | 
|  | m_isInitialized     = true; | 
|  | m_info              = Success; | 
|  | m_analysisIsOk      = true; | 
|  | m_factorizationIsOk = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | template<typename Derived> | 
|  | template<bool DoLDLT> | 
|  | void SimplicialCholeskyBase<Derived>::factorize_preordered(const CholMatrixType& ap) | 
|  | { | 
|  | using std::sqrt; | 
|  |  | 
|  | eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); | 
|  | eigen_assert(ap.rows()==ap.cols()); | 
|  | eigen_assert(m_parent.size()==ap.rows()); | 
|  | eigen_assert(m_nonZerosPerCol.size()==ap.rows()); | 
|  |  | 
|  | const StorageIndex size = StorageIndex(ap.rows()); | 
|  | const StorageIndex* Lp = m_matrix.outerIndexPtr(); | 
|  | StorageIndex* Li = m_matrix.innerIndexPtr(); | 
|  | Scalar* Lx = m_matrix.valuePtr(); | 
|  |  | 
|  | ei_declare_aligned_stack_constructed_variable(Scalar, y, size, 0); | 
|  | ei_declare_aligned_stack_constructed_variable(StorageIndex,  pattern, size, 0); | 
|  | ei_declare_aligned_stack_constructed_variable(StorageIndex,  tags, size, 0); | 
|  |  | 
|  | bool ok = true; | 
|  | m_diag.resize(DoLDLT ? size : 0); | 
|  |  | 
|  | for(StorageIndex k = 0; k < size; ++k) | 
|  | { | 
|  | // compute nonzero pattern of kth row of L, in topological order | 
|  | y[k] = 0.0;                     // Y(0:k) is now all zero | 
|  | StorageIndex top = size;               // stack for pattern is empty | 
|  | tags[k] = k;                    // mark node k as visited | 
|  | m_nonZerosPerCol[k] = 0;        // count of nonzeros in column k of L | 
|  | for(typename CholMatrixType::InnerIterator it(ap,k); it; ++it) | 
|  | { | 
|  | StorageIndex i = it.index(); | 
|  | if(i <= k) | 
|  | { | 
|  | y[i] += numext::conj(it.value());            /* scatter A(i,k) into Y (sum duplicates) */ | 
|  | Index len; | 
|  | for(len = 0; tags[i] != k; i = m_parent[i]) | 
|  | { | 
|  | pattern[len++] = i;     /* L(k,i) is nonzero */ | 
|  | tags[i] = k;            /* mark i as visited */ | 
|  | } | 
|  | while(len > 0) | 
|  | pattern[--top] = pattern[--len]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* compute numerical values kth row of L (a sparse triangular solve) */ | 
|  |  | 
|  | RealScalar d = numext::real(y[k]) * m_shiftScale + m_shiftOffset;    // get D(k,k), apply the shift function, and clear Y(k) | 
|  | y[k] = 0.0; | 
|  | for(; top < size; ++top) | 
|  | { | 
|  | Index i = pattern[top];       /* pattern[top:n-1] is pattern of L(:,k) */ | 
|  | Scalar yi = y[i];             /* get and clear Y(i) */ | 
|  | y[i] = 0.0; | 
|  |  | 
|  | /* the nonzero entry L(k,i) */ | 
|  | Scalar l_ki; | 
|  | if(DoLDLT) | 
|  | l_ki = yi / m_diag[i]; | 
|  | else | 
|  | yi = l_ki = yi / Lx[Lp[i]]; | 
|  |  | 
|  | Index p2 = Lp[i] + m_nonZerosPerCol[i]; | 
|  | Index p; | 
|  | for(p = Lp[i] + (DoLDLT ? 0 : 1); p < p2; ++p) | 
|  | y[Li[p]] -= numext::conj(Lx[p]) * yi; | 
|  | d -= numext::real(l_ki * numext::conj(yi)); | 
|  | Li[p] = k;                          /* store L(k,i) in column form of L */ | 
|  | Lx[p] = l_ki; | 
|  | ++m_nonZerosPerCol[i];              /* increment count of nonzeros in col i */ | 
|  | } | 
|  | if(DoLDLT) | 
|  | { | 
|  | m_diag[k] = d; | 
|  | if(d == RealScalar(0)) | 
|  | { | 
|  | ok = false;                         /* failure, D(k,k) is zero */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | Index p = Lp[k] + m_nonZerosPerCol[k]++; | 
|  | Li[p] = k ;                /* store L(k,k) = sqrt (d) in column k */ | 
|  | if(d <= RealScalar(0)) { | 
|  | ok = false;              /* failure, matrix is not positive definite */ | 
|  | break; | 
|  | } | 
|  | Lx[p] = sqrt(d) ; | 
|  | } | 
|  | } | 
|  |  | 
|  | m_info = ok ? Success : NumericalIssue; | 
|  | m_factorizationIsOk = true; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_SIMPLICIAL_CHOLESKY_IMPL_H |