|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #ifndef EIGEN_UMFPACKSUPPORT_H | 
|  | #define EIGEN_UMFPACKSUPPORT_H | 
|  |  | 
|  | namespace Eigen { | 
|  |  | 
|  | /* TODO extract L, extract U, compute det, etc... */ | 
|  |  | 
|  | // generic double/complex<double> wrapper functions: | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, double) | 
|  | { umfpack_di_free_numeric(Numeric); *Numeric = 0; } | 
|  |  | 
|  | inline void umfpack_free_numeric(void **Numeric, std::complex<double>) | 
|  | { umfpack_zi_free_numeric(Numeric); *Numeric = 0; } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, double) | 
|  | { umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } | 
|  |  | 
|  | inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>) | 
|  | { umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } | 
|  |  | 
|  | inline int umfpack_symbolic(int n_row,int n_col, | 
|  | const int Ap[], const int Ai[], const double Ax[], void **Symbolic, | 
|  | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_symbolic(int n_row,int n_col, | 
|  | const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, | 
|  | const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], | 
|  | void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | void *Symbolic, void **Numeric, | 
|  | const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_numeric(Ap,Ai,&numext::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], | 
|  | double X[], const double B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], | 
|  | std::complex<double> X[], const std::complex<double> B[], void *Numeric, | 
|  | const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_zi_solve(sys,Ap,Ai,&numext::real_ref(Ax[0]),0,&numext::real_ref(X[0]),0,&numext::real_ref(B[0]),0,Numeric,Control,Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) | 
|  | { | 
|  | return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) | 
|  | { | 
|  | return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], | 
|  | int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) | 
|  | { | 
|  | return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], | 
|  | int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) | 
|  | { | 
|  | double& lx0_real = numext::real_ref(Lx[0]); | 
|  | double& ux0_real = numext::real_ref(Ux[0]); | 
|  | double& dx0_real = numext::real_ref(Dx[0]); | 
|  | return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, | 
|  | Dx?&dx0_real:0,0,do_recip,Rs,Numeric); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) | 
|  | { | 
|  | return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); | 
|  | } | 
|  |  | 
|  | inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) | 
|  | { | 
|  | double& mx_real = numext::real_ref(*Mx); | 
|  | return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** \ingroup UmfPackSupport_Module | 
|  | * \brief A sparse LU factorization and solver based on UmfPack | 
|  | * | 
|  | * This class allows to solve for A.X = B sparse linear problems via a LU factorization | 
|  | * using the UmfPack library. The sparse matrix A must be squared and full rank. | 
|  | * The vectors or matrices X and B can be either dense or sparse. | 
|  | * | 
|  | * \warning The input matrix A should be in a \b compressed and \b column-major form. | 
|  | * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. | 
|  | * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> | 
|  | * | 
|  | * \sa \ref TutorialSparseDirectSolvers | 
|  | */ | 
|  | template<typename _MatrixType> | 
|  | class UmfPackLU : public SparseSolverBase<UmfPackLU<_MatrixType> > | 
|  | { | 
|  | protected: | 
|  | typedef SparseSolverBase<UmfPackLU<_MatrixType> > Base; | 
|  | using Base::m_isInitialized; | 
|  | public: | 
|  | using Base::_solve_impl; | 
|  | typedef _MatrixType MatrixType; | 
|  | typedef typename MatrixType::Scalar Scalar; | 
|  | typedef typename MatrixType::RealScalar RealScalar; | 
|  | typedef typename MatrixType::StorageIndex StorageIndex; | 
|  | typedef Matrix<Scalar,Dynamic,1> Vector; | 
|  | typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; | 
|  | typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; | 
|  | typedef SparseMatrix<Scalar> LUMatrixType; | 
|  | typedef SparseMatrix<Scalar,ColMajor,int> UmfpackMatrixType; | 
|  | typedef Ref<const UmfpackMatrixType, StandardCompressedFormat> UmfpackMatrixRef; | 
|  |  | 
|  | public: | 
|  |  | 
|  | UmfPackLU() | 
|  | : m_dummy(0,0), mp_matrix(m_dummy) | 
|  | { | 
|  | init(); | 
|  | } | 
|  |  | 
|  | explicit UmfPackLU(const MatrixType& matrix) | 
|  | : mp_matrix(matrix) | 
|  | { | 
|  | init(); | 
|  | compute(matrix); | 
|  | } | 
|  |  | 
|  | ~UmfPackLU() | 
|  | { | 
|  | if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); | 
|  | if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar()); | 
|  | } | 
|  |  | 
|  | inline Index rows() const { return mp_matrix.rows(); } | 
|  | inline Index cols() const { return mp_matrix.cols(); } | 
|  |  | 
|  | /** \brief Reports whether previous computation was successful. | 
|  | * | 
|  | * \returns \c Success if computation was succesful, | 
|  | *          \c NumericalIssue if the matrix.appears to be negative. | 
|  | */ | 
|  | ComputationInfo info() const | 
|  | { | 
|  | eigen_assert(m_isInitialized && "Decomposition is not initialized."); | 
|  | return m_info; | 
|  | } | 
|  |  | 
|  | inline const LUMatrixType& matrixL() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_l; | 
|  | } | 
|  |  | 
|  | inline const LUMatrixType& matrixU() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_u; | 
|  | } | 
|  |  | 
|  | inline const IntColVectorType& permutationP() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_p; | 
|  | } | 
|  |  | 
|  | inline const IntRowVectorType& permutationQ() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) extractData(); | 
|  | return m_q; | 
|  | } | 
|  |  | 
|  | /** Computes the sparse Cholesky decomposition of \a matrix | 
|  | *  Note that the matrix should be column-major, and in compressed format for best performance. | 
|  | *  \sa SparseMatrix::makeCompressed(). | 
|  | */ | 
|  | template<typename InputMatrixType> | 
|  | void compute(const InputMatrixType& matrix) | 
|  | { | 
|  | if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); | 
|  | if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar()); | 
|  | grab(matrix.derived()); | 
|  | analyzePattern_impl(); | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** Performs a symbolic decomposition on the sparcity of \a matrix. | 
|  | * | 
|  | * This function is particularly useful when solving for several problems having the same structure. | 
|  | * | 
|  | * \sa factorize(), compute() | 
|  | */ | 
|  | template<typename InputMatrixType> | 
|  | void analyzePattern(const InputMatrixType& matrix) | 
|  | { | 
|  | if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); | 
|  | if(m_numeric)  umfpack_free_numeric(&m_numeric,Scalar()); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | analyzePattern_impl(); | 
|  | } | 
|  |  | 
|  | /** Performs a numeric decomposition of \a matrix | 
|  | * | 
|  | * The given matrix must has the same sparcity than the matrix on which the pattern anylysis has been performed. | 
|  | * | 
|  | * \sa analyzePattern(), compute() | 
|  | */ | 
|  | template<typename InputMatrixType> | 
|  | void factorize(const InputMatrixType& matrix) | 
|  | { | 
|  | eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); | 
|  | if(m_numeric) | 
|  | umfpack_free_numeric(&m_numeric,Scalar()); | 
|  |  | 
|  | grab(matrix.derived()); | 
|  |  | 
|  | factorize_impl(); | 
|  | } | 
|  |  | 
|  | /** \internal */ | 
|  | template<typename BDerived,typename XDerived> | 
|  | bool _solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; | 
|  |  | 
|  | Scalar determinant() const; | 
|  |  | 
|  | void extractData() const; | 
|  |  | 
|  | protected: | 
|  |  | 
|  | void init() | 
|  | { | 
|  | m_info                  = InvalidInput; | 
|  | m_isInitialized         = false; | 
|  | m_numeric               = 0; | 
|  | m_symbolic              = 0; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | void analyzePattern_impl() | 
|  | { | 
|  | int errorCode = 0; | 
|  | errorCode = umfpack_symbolic(internal::convert_index<int>(mp_matrix.rows()), | 
|  | internal::convert_index<int>(mp_matrix.cols()), | 
|  | mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
|  | &m_symbolic, 0, 0); | 
|  |  | 
|  | m_isInitialized = true; | 
|  | m_info = errorCode ? InvalidInput : Success; | 
|  | m_analysisIsOk = true; | 
|  | m_factorizationIsOk = false; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | void factorize_impl() | 
|  | { | 
|  | int errorCode; | 
|  | errorCode = umfpack_numeric(mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
|  | m_symbolic, &m_numeric, 0, 0); | 
|  |  | 
|  | m_info = errorCode ? NumericalIssue : Success; | 
|  | m_factorizationIsOk = true; | 
|  | m_extractedDataAreDirty = true; | 
|  | } | 
|  |  | 
|  | template<typename MatrixDerived> | 
|  | void grab(const EigenBase<MatrixDerived> &A) | 
|  | { | 
|  | mp_matrix.~UmfpackMatrixRef(); | 
|  | ::new (&mp_matrix) UmfpackMatrixRef(A.derived()); | 
|  | } | 
|  |  | 
|  | void grab(const UmfpackMatrixRef &A) | 
|  | { | 
|  | if(&(A.derived()) != &mp_matrix) | 
|  | { | 
|  | mp_matrix.~UmfpackMatrixRef(); | 
|  | ::new (&mp_matrix) UmfpackMatrixRef(A); | 
|  | } | 
|  | } | 
|  |  | 
|  | // cached data to reduce reallocation, etc. | 
|  | mutable LUMatrixType m_l; | 
|  | mutable LUMatrixType m_u; | 
|  | mutable IntColVectorType m_p; | 
|  | mutable IntRowVectorType m_q; | 
|  |  | 
|  | UmfpackMatrixType m_dummy; | 
|  | UmfpackMatrixRef mp_matrix; | 
|  |  | 
|  | void* m_numeric; | 
|  | void* m_symbolic; | 
|  |  | 
|  | mutable ComputationInfo m_info; | 
|  | int m_factorizationIsOk; | 
|  | int m_analysisIsOk; | 
|  | mutable bool m_extractedDataAreDirty; | 
|  |  | 
|  | private: | 
|  | UmfPackLU(UmfPackLU& ) { } | 
|  | }; | 
|  |  | 
|  |  | 
|  | template<typename MatrixType> | 
|  | void UmfPackLU<MatrixType>::extractData() const | 
|  | { | 
|  | if (m_extractedDataAreDirty) | 
|  | { | 
|  | // get size of the data | 
|  | int lnz, unz, rows, cols, nz_udiag; | 
|  | umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); | 
|  |  | 
|  | // allocate data | 
|  | m_l.resize(rows,(std::min)(rows,cols)); | 
|  | m_l.resizeNonZeros(lnz); | 
|  |  | 
|  | m_u.resize((std::min)(rows,cols),cols); | 
|  | m_u.resizeNonZeros(unz); | 
|  |  | 
|  | m_p.resize(rows); | 
|  | m_q.resize(cols); | 
|  |  | 
|  | // extract | 
|  | umfpack_get_numeric(m_l.outerIndexPtr(), m_l.innerIndexPtr(), m_l.valuePtr(), | 
|  | m_u.outerIndexPtr(), m_u.innerIndexPtr(), m_u.valuePtr(), | 
|  | m_p.data(), m_q.data(), 0, 0, 0, m_numeric); | 
|  |  | 
|  | m_extractedDataAreDirty = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const | 
|  | { | 
|  | Scalar det; | 
|  | umfpack_get_determinant(&det, 0, m_numeric, 0); | 
|  | return det; | 
|  | } | 
|  |  | 
|  | template<typename MatrixType> | 
|  | template<typename BDerived,typename XDerived> | 
|  | bool UmfPackLU<MatrixType>::_solve_impl(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const | 
|  | { | 
|  | Index rhsCols = b.cols(); | 
|  | eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); | 
|  | eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); | 
|  | eigen_assert(b.derived().data() != x.derived().data() && " Umfpack does not support inplace solve"); | 
|  |  | 
|  | int errorCode; | 
|  | Scalar* x_ptr = 0; | 
|  | Matrix<Scalar,Dynamic,1> x_tmp; | 
|  | if(x.innerStride()!=1) | 
|  | { | 
|  | x_tmp.resize(x.rows()); | 
|  | x_ptr = x_tmp.data(); | 
|  | } | 
|  | for (int j=0; j<rhsCols; ++j) | 
|  | { | 
|  | if(x.innerStride()==1) | 
|  | x_ptr = &x.col(j).coeffRef(0); | 
|  | errorCode = umfpack_solve(UMFPACK_A, | 
|  | mp_matrix.outerIndexPtr(), mp_matrix.innerIndexPtr(), mp_matrix.valuePtr(), | 
|  | x_ptr, &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0); | 
|  | if(x.innerStride()!=1) | 
|  | x.col(j) = x_tmp; | 
|  | if (errorCode!=0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | } // end namespace Eigen | 
|  |  | 
|  | #endif // EIGEN_UMFPACKSUPPORT_H |