|  | #ifndef THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | 
|  | #define THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ | 
|  |  | 
|  | typedef int TensorIndex; | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  |  | 
|  | #include "third_party/eigen3/unsupported/Eigen/CXX11/Tensor" | 
|  | #include "testing/base/public/benchmark.h" | 
|  |  | 
|  | using Eigen::Tensor; | 
|  | using Eigen::TensorMap; | 
|  |  | 
|  |  | 
|  | // TODO(bsteiner): also templatize on the input type since we have users | 
|  | // for int8 as well as floats. | 
|  | template <typename Device> class BenchmarkSuite { | 
|  | public: | 
|  | BenchmarkSuite(const Device& device, size_t m, size_t k, size_t n) | 
|  | : m_(m), k_(k), n_(n), device_(device) { | 
|  | initialize(); | 
|  | } | 
|  |  | 
|  | BenchmarkSuite(const Device& device, size_t m) | 
|  | : m_(m), k_(m), n_(m), device_(device) { | 
|  | initialize(); | 
|  | } | 
|  |  | 
|  | ~BenchmarkSuite() { | 
|  | device_.deallocate(a_); | 
|  | device_.deallocate(b_); | 
|  | device_.deallocate(c_); | 
|  | } | 
|  |  | 
|  | void memcpy(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | device_.memcpy(c_, a_, m_ * m_ * sizeof(float)); | 
|  | } | 
|  | // Record the number of values copied per second | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void random(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> sizes(m_, m_); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = C.random(); | 
|  | } | 
|  | // Record the number of random numbers generated per second | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void slicing(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> sizes(m_, m_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | const Eigen::DSizes<TensorIndex, 2> quarter_sizes(Eigen::array<TensorIndex, 2>(m_/2, m_/2)); | 
|  | const Eigen::DSizes<TensorIndex, 2> first_quadrant(Eigen::array<TensorIndex, 2>(0, 0)); | 
|  | const Eigen::DSizes<TensorIndex, 2> second_quadrant(Eigen::array<TensorIndex, 2>(0, m_/2)); | 
|  | const Eigen::DSizes<TensorIndex, 2> third_quadrant(Eigen::array<TensorIndex, 2>(m_/2, 0)); | 
|  | const Eigen::DSizes<TensorIndex, 2> fourth_quadrant(Eigen::array<TensorIndex, 2>(m_/2, m_/2)); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.slice(first_quadrant, quarter_sizes).device(device_) = | 
|  | A.slice(first_quadrant, quarter_sizes); | 
|  | C.slice(second_quadrant, quarter_sizes).device(device_) = | 
|  | B.slice(second_quadrant, quarter_sizes); | 
|  | C.slice(third_quadrant, quarter_sizes).device(device_) = | 
|  | A.slice(third_quadrant, quarter_sizes); | 
|  | C.slice(fourth_quadrant, quarter_sizes).device(device_) = | 
|  | B.slice(fourth_quadrant, quarter_sizes); | 
|  | } | 
|  | // Record the number of values copied from the rhs slice to the lhs slice | 
|  | // each second | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void shuffling(int num_iters) { | 
|  | eigen_assert(m_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> size_a(m_, k_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | const Eigen::array<TensorIndex, 2> size_b(k_, m_); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | const Eigen::array<int, 2> shuffle(1, 0); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.shuffle(shuffle); | 
|  | } | 
|  | // Record the number of values shuffled from A and copied to B each second | 
|  | finalizeBenchmark(m_ * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void padding(int num_iters) { | 
|  | eigen_assert(m_ == k_); | 
|  | const Eigen::array<TensorIndex, 2> size_a(m_, k_-3); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | const Eigen::array<TensorIndex, 2> size_b(k_, m_); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | Eigen::array<Eigen::IndexPair<TensorIndex>, 2> paddings; | 
|  | paddings[0] = Eigen::IndexPair<TensorIndex>(0, 0); | 
|  | paddings[1] = Eigen::IndexPair<TensorIndex>(2, 1); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.pad(paddings); | 
|  | } | 
|  | // Record the number of values copied from the padded tensor A each second | 
|  | finalizeBenchmark(m_ * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void striding(int num_iters) { | 
|  | eigen_assert(m_ == k_); | 
|  | const Eigen::array<TensorIndex, 2> size_a(m_, k_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | const Eigen::array<TensorIndex, 2> size_b(m_, k_ / 2); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, size_b); | 
|  |  | 
|  | const Eigen::array<TensorIndex, 2> strides(1, 2); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | B.device(device_) = A.stride(strides); | 
|  | } | 
|  | // Record the number of values copied from the padded tensor A each second | 
|  | finalizeBenchmark(m_ * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void broadcasting(int num_iters) { | 
|  | const Eigen::array<TensorIndex, 2> size_a(m_, 1); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, size_a); | 
|  | const Eigen::array<TensorIndex, 2> size_c(m_, n_); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, size_c); | 
|  |  | 
|  | #if defined(__CUDACC__) | 
|  | // nvcc doesn't support cxx11 | 
|  | const Eigen::array<int, 2> broadcast(1, n_); | 
|  | #else | 
|  | // Take advantage of cxx11 to give the compiler information it can use to | 
|  | // optimize the code. | 
|  | Eigen::IndexList<Eigen::type2index<1>, int> broadcast; | 
|  | broadcast.set(1, n_); | 
|  | #endif | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.broadcast(broadcast); | 
|  | } | 
|  | // Record the number of values broadcasted from A and copied to C each second | 
|  | finalizeBenchmark(m_ * n_ * num_iters); | 
|  | } | 
|  |  | 
|  | void coeffWiseOp(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> sizes(m_, m_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A * A.constant(3.14) + B * B.constant(2.7); | 
|  | } | 
|  | // Record the number of FLOP executed per second (2 multiplications and | 
|  | // 1 addition per value) | 
|  | finalizeBenchmark(3 * m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void algebraicFunc(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> sizes(m_, m_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.rsqrt() + B.sqrt() * B.square(); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | void transcendentalFunc(int num_iters) { | 
|  | eigen_assert(m_ == k_ && k_ == n_); | 
|  | const Eigen::array<TensorIndex, 2> sizes(m_, m_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizes); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizes); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizes); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.exp() + B.log(); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | // Simple reduction | 
|  | void reduction(int num_iters) { | 
|  | const Eigen::array<TensorIndex, 2> input_size(k_, n_); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, input_size); | 
|  | const Eigen::array<TensorIndex, 1> output_size(n_); | 
|  | TensorMap<Tensor<float, 1>, Eigen::Aligned> C(c_, output_size); | 
|  |  | 
|  | const Eigen::array<TensorIndex, 1> sum_along_dim(0); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = B.sum(sum_along_dim); | 
|  | } | 
|  | // Record the number of FLOP executed per second (assuming one operation | 
|  | // per value) | 
|  | finalizeBenchmark(m_ * m_ * num_iters); | 
|  | } | 
|  |  | 
|  | // do a contraction which is equivalent to a matrix multiplication | 
|  | void contraction(int num_iters) { | 
|  | const Eigen::array<TensorIndex, 2> sizeA(m_, k_); | 
|  | const Eigen::array<TensorIndex, 2> sizeB(k_, n_); | 
|  | const Eigen::array<TensorIndex, 2> sizeC(m_, n_); | 
|  |  | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, sizeA); | 
|  | const TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, sizeB); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, sizeC); | 
|  |  | 
|  | typedef typename Tensor<float, 2>::DimensionPair DimPair; | 
|  | const Eigen::array<DimPair, 1> dims(DimPair(1, 0)); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.contract(B, dims); | 
|  | } | 
|  | // Record the number of FLOP executed per second (size_ multiplications and | 
|  | // additions for each value in the resulting tensor) | 
|  | finalizeBenchmark(static_cast<int64>(2) * m_ * n_ * k_ * num_iters); | 
|  | } | 
|  |  | 
|  | void convolution(int num_iters, int kernel_x, int kernel_y) { | 
|  | const Eigen::array<TensorIndex, 2> input_sizes(m_, n_); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> A(a_, input_sizes); | 
|  | const Eigen::array<TensorIndex, 2> kernel_sizes(kernel_x, kernel_y); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> B(b_, kernel_sizes); | 
|  | const Eigen::array<TensorIndex, 2> result_sizes( | 
|  | m_ - kernel_x + 1, n_ - kernel_y + 1); | 
|  | TensorMap<Tensor<float, 2>, Eigen::Aligned> C(c_, result_sizes); | 
|  | Eigen::array<Tensor<float, 2>::Index, 2> dims(0, 1); | 
|  |  | 
|  | StartBenchmarkTiming(); | 
|  | for (int iter = 0; iter < num_iters; ++iter) { | 
|  | C.device(device_) = A.convolve(B, dims); | 
|  | } | 
|  | // Record the number of FLOP executed per second (kernel_size | 
|  | // multiplications and additions for each value in the resulting tensor) | 
|  | finalizeBenchmark( | 
|  | (m_ - kernel_x + 1) * (n_ - kernel_y + 1) * kernel_x * kernel_y * 2 * num_iters); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void initialize() { | 
|  | a_ = (float *) device_.allocate(m_ * k_ * sizeof(float)); | 
|  | b_ = (float *) device_.allocate(k_ * n_ * sizeof(float)); | 
|  | c_ = (float *) device_.allocate(m_ * n_ * sizeof(float)); | 
|  |  | 
|  | // Initialize the content of the memory pools to prevent asan from | 
|  | // complaining. | 
|  | device_.memset(a_, 12, m_ * k_ * sizeof(float)); | 
|  | device_.memset(b_, 23, k_ * n_ * sizeof(float)); | 
|  | device_.memset(c_, 31, m_ * n_ * sizeof(float)); | 
|  |  | 
|  | BenchmarkUseRealTime(); | 
|  | } | 
|  |  | 
|  | inline void finalizeBenchmark(int64 num_items) { | 
|  | #if defined(EIGEN_USE_GPU) && defined(__CUDACC__) | 
|  | if (Eigen::internal::is_same<Device, Eigen::GpuDevice>::value) { | 
|  | device_.synchronize(); | 
|  | } | 
|  | #endif | 
|  | StopBenchmarkTiming(); | 
|  | SetBenchmarkItemsProcessed(num_items); | 
|  | } | 
|  |  | 
|  |  | 
|  | size_t m_; | 
|  | size_t k_; | 
|  | size_t n_; | 
|  | float* a_; | 
|  | float* b_; | 
|  | float* c_; | 
|  | Device device_; | 
|  | }; | 
|  | #endif  // THIRD_PARTY_EIGEN3_TENSOR_BENCHMARKS_H_ |