| // This file is part of Eigen, a lightweight C++ template library | 
 | // for linear algebra. | 
 | // | 
 | // Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com> | 
 | //                    Benoit Steiner <benoit.steiner.goog@gmail.com> | 
 | // | 
 | // This Source Code Form is subject to the terms of the Mozilla | 
 | // Public License v. 2.0. If a copy of the MPL was not distributed | 
 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
 |  | 
 | #include "main.h" | 
 |  | 
 | #include <Eigen/CXX11/Tensor> | 
 |  | 
 | using Eigen::Tensor; | 
 | using Eigen::array; | 
 | using Eigen::Tuple; | 
 |  | 
 | template <int DataLayout> | 
 | static void test_simple_index_tuples() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); | 
 |   index_tuples = tensor.index_tuples(); | 
 |  | 
 |   for (DenseIndex n = 0; n < 2*3*5*7; ++n) { | 
 |     const Tuple<DenseIndex, float>& v = index_tuples.coeff(n); | 
 |     VERIFY_IS_EQUAL(v.first, n); | 
 |     VERIFY_IS_EQUAL(v.second, tensor.coeff(n)); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_index_tuples_dim() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); | 
 |  | 
 |   index_tuples = tensor.index_tuples(); | 
 |  | 
 |   for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) { | 
 |     const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l); | 
 |     VERIFY_IS_EQUAL(v.first, n); | 
 |     VERIFY_IS_EQUAL(v.second, tensor(n)); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_argmax_tuple_reducer() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); | 
 |   index_tuples = tensor.index_tuples(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1); | 
 |   DimensionList<DenseIndex, 4> dims; | 
 |   reduced = index_tuples.reduce( | 
 |       dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>()); | 
 |  | 
 |   Tensor<float, 1, DataLayout> maxi = tensor.maximum(); | 
 |  | 
 |   VERIFY_IS_EQUAL(maxi(0), reduced(0).second); | 
 |  | 
 |   array<DenseIndex, 3> reduce_dims; | 
 |   for (int d = 0; d < 3; ++d) reduce_dims[d] = d; | 
 |   Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); | 
 |   reduced_by_dims = index_tuples.reduce( | 
 |       reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>()); | 
 |  | 
 |   Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims); | 
 |  | 
 |   for (int l = 0; l < 7; ++l) { | 
 |     VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_argmin_tuple_reducer() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7); | 
 |   index_tuples = tensor.index_tuples(); | 
 |  | 
 |   Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1); | 
 |   DimensionList<DenseIndex, 4> dims; | 
 |   reduced = index_tuples.reduce( | 
 |       dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>()); | 
 |  | 
 |   Tensor<float, 1, DataLayout> mini = tensor.minimum(); | 
 |  | 
 |   VERIFY_IS_EQUAL(mini(0), reduced(0).second); | 
 |  | 
 |   array<DenseIndex, 3> reduce_dims; | 
 |   for (int d = 0; d < 3; ++d) reduce_dims[d] = d; | 
 |   Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7); | 
 |   reduced_by_dims = index_tuples.reduce( | 
 |       reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>()); | 
 |  | 
 |   Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims); | 
 |  | 
 |   for (int l = 0; l < 7; ++l) { | 
 |     VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second); | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_simple_argmax() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |   tensor(0,0,0,0) = 10.0; | 
 |  | 
 |   Tensor<DenseIndex, 1, DataLayout> tensor_argmax(1); | 
 |  | 
 |   tensor_argmax = tensor.argmax(); | 
 |  | 
 |   VERIFY_IS_EQUAL(tensor_argmax(0), 0); | 
 |  | 
 |   tensor(1,2,4,6) = 20.0; | 
 |  | 
 |   tensor_argmax = tensor.argmax(); | 
 |  | 
 |   VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1); | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_simple_argmin() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   tensor.setRandom(); | 
 |   tensor = (tensor + tensor.constant(0.5)).log(); | 
 |   tensor(0,0,0,0) = -10.0; | 
 |  | 
 |   Tensor<DenseIndex, 1, DataLayout> tensor_argmin(1); | 
 |  | 
 |   tensor_argmin = tensor.argmin(); | 
 |  | 
 |   VERIFY_IS_EQUAL(tensor_argmin(0), 0); | 
 |  | 
 |   tensor(1,2,4,6) = -20.0; | 
 |  | 
 |   tensor_argmin = tensor.argmin(); | 
 |  | 
 |   VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1); | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_argmax_dim() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   std::vector<int> dims {2, 3, 5, 7}; | 
 |  | 
 |   for (int dim = 0; dim < 4; ++dim) { | 
 |     tensor.setRandom(); | 
 |     tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout> tensor_argmax; | 
 |     array<DenseIndex, 4> ix; | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != 0) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0 | 
 |             tensor(ix) = 10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     tensor_argmax = tensor.argmax(dim); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(), | 
 |                     size_t(2*3*5*7 / tensor.dimension(dim))); | 
 |     for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) { | 
 |       // Expect max to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != tensor.dimension(dim) - 1) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0 | 
 |             tensor(ix) = 20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     tensor_argmax = tensor.argmax(dim); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(), | 
 |                     size_t(2*3*5*7 / tensor.dimension(dim))); | 
 |     for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) { | 
 |       // Expect max to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | template <int DataLayout> | 
 | static void test_argmin_dim() | 
 | { | 
 |   Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
 |   std::vector<int> dims {2, 3, 5, 7}; | 
 |  | 
 |   for (int dim = 0; dim < 4; ++dim) { | 
 |     tensor.setRandom(); | 
 |     tensor = (tensor + tensor.constant(0.5)).log(); | 
 |  | 
 |     Tensor<DenseIndex, 3, DataLayout> tensor_argmin; | 
 |     array<DenseIndex, 4> ix; | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != 0) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0 | 
 |             tensor(ix) = -10.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     tensor_argmin = tensor.argmin(dim); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(), | 
 |                     size_t(2*3*5*7 / tensor.dimension(dim))); | 
 |     for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) { | 
 |       // Expect min to be in the first index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0); | 
 |     } | 
 |  | 
 |     for (int i = 0; i < 2; ++i) { | 
 |       for (int j = 0; j < 3; ++j) { | 
 |         for (int k = 0; k < 5; ++k) { | 
 |           for (int l = 0; l < 7; ++l) { | 
 |             ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l; | 
 |             if (ix[dim] != tensor.dimension(dim) - 1) continue; | 
 |             // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0 | 
 |             tensor(ix) = -20.0; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     tensor_argmin = tensor.argmin(dim); | 
 |  | 
 |     VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(), | 
 |                     size_t(2*3*5*7 / tensor.dimension(dim))); | 
 |     for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) { | 
 |       // Expect min to be in the last index of the reduced dimension | 
 |       VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void test_cxx11_tensor_argmax() | 
 | { | 
 |   CALL_SUBTEST(test_simple_index_tuples<RowMajor>()); | 
 |   CALL_SUBTEST(test_simple_index_tuples<ColMajor>()); | 
 |   CALL_SUBTEST(test_index_tuples_dim<RowMajor>()); | 
 |   CALL_SUBTEST(test_index_tuples_dim<ColMajor>()); | 
 |   CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>()); | 
 |   CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>()); | 
 |   CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>()); | 
 |   CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>()); | 
 |   CALL_SUBTEST(test_simple_argmax<RowMajor>()); | 
 |   CALL_SUBTEST(test_simple_argmax<ColMajor>()); | 
 |   CALL_SUBTEST(test_simple_argmin<RowMajor>()); | 
 |   CALL_SUBTEST(test_simple_argmin<ColMajor>()); | 
 |   CALL_SUBTEST(test_argmax_dim<RowMajor>()); | 
 |   CALL_SUBTEST(test_argmax_dim<ColMajor>()); | 
 |   CALL_SUBTEST(test_argmin_dim<RowMajor>()); | 
 |   CALL_SUBTEST(test_argmin_dim<ColMajor>()); | 
 | } |