|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_simple_broadcasting() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 4> broadcasts; | 
|  | broadcasts[0] = 1; | 
|  | broadcasts[1] = 1; | 
|  | broadcasts[2] = 1; | 
|  | broadcasts[3] = 1; | 
|  |  | 
|  | Tensor<float, 4, DataLayout> no_broadcast; | 
|  | no_broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(no_broadcast.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(no_broadcast.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(no_broadcast.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(no_broadcast.dimension(3), 7); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i,j,k,l), no_broadcast(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | broadcasts[0] = 2; | 
|  | broadcasts[1] = 3; | 
|  | broadcasts[2] = 1; | 
|  | broadcasts[3] = 4; | 
|  | Tensor<float, 4, DataLayout> broadcast; | 
|  | broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(0), 4); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(1), 9); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(3), 28); | 
|  |  | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 28; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i%2,j%3,k%5,l%7), broadcast(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_vectorized_broadcasting() | 
|  | { | 
|  | Tensor<float, 3, DataLayout> tensor(8,3,5); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 3> broadcasts; | 
|  | broadcasts[0] = 2; | 
|  | broadcasts[1] = 3; | 
|  | broadcasts[2] = 4; | 
|  |  | 
|  | Tensor<float, 3, DataLayout> broadcast; | 
|  | broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(0), 16); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(1), 9); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(2), 20); | 
|  |  | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 20; ++k) { | 
|  | VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | tensor.resize(11,3,5); | 
|  | tensor.setRandom(); | 
|  | broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(0), 22); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(1), 9); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(2), 20); | 
|  |  | 
|  | for (int i = 0; i < 22; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 20; ++k) { | 
|  | VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_static_broadcasting() | 
|  | { | 
|  | Tensor<float, 3, DataLayout> tensor(8,3,5); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | #ifdef EIGEN_HAS_CONSTEXPR | 
|  | Eigen::IndexList<Eigen::type2index<2>, Eigen::type2index<3>, Eigen::type2index<4>> broadcasts; | 
|  | #else | 
|  | Eigen::array<int, 3> broadcasts; | 
|  | broadcasts[0] = 2; | 
|  | broadcasts[1] = 3; | 
|  | broadcasts[2] = 4; | 
|  | #endif | 
|  |  | 
|  | Tensor<float, 3, DataLayout> broadcast; | 
|  | broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(0), 16); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(1), 9); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(2), 20); | 
|  |  | 
|  | for (int i = 0; i < 16; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 20; ++k) { | 
|  | VERIFY_IS_EQUAL(tensor(i%8,j%3,k%5), broadcast(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | tensor.resize(11,3,5); | 
|  | tensor.setRandom(); | 
|  | broadcast = tensor.broadcast(broadcasts); | 
|  |  | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(0), 22); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(1), 9); | 
|  | VERIFY_IS_EQUAL(broadcast.dimension(2), 20); | 
|  |  | 
|  | for (int i = 0; i < 22; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 20; ++k) { | 
|  | VERIFY_IS_EQUAL(tensor(i%11,j%3,k%5), broadcast(i,j,k)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_fixed_size_broadcasting() | 
|  | { | 
|  | // Need to add a [] operator to the Size class for this to work | 
|  | #if 0 | 
|  | Tensor<float, 1, DataLayout> t1(10); | 
|  | t1.setRandom(); | 
|  | TensorFixedSize<float, Sizes<1>, DataLayout> t2; | 
|  | t2 = t2.constant(20.0f); | 
|  |  | 
|  | Tensor<float, 1, DataLayout> t3 = t1 + t2.broadcast(Eigen::array<int, 1>{{10}}); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | VERIFY_IS_APPROX(t3(i), t1(i) + t2(0)); | 
|  | } | 
|  |  | 
|  | TensorMap<TensorFixedSize<float, Sizes<1>, DataLayout> > t4(t2.data(), {{1}}); | 
|  | Tensor<float, 1, DataLayout> t5 = t1 + t4.broadcast(Eigen::array<int, 1>{{10}}); | 
|  | for (int i = 0; i < 10; ++i) { | 
|  | VERIFY_IS_APPROX(t5(i), t1(i) + t2(0)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  |  | 
|  | void test_cxx11_tensor_broadcasting() | 
|  | { | 
|  | CALL_SUBTEST(test_simple_broadcasting<ColMajor>()); | 
|  | CALL_SUBTEST(test_simple_broadcasting<RowMajor>()); | 
|  | CALL_SUBTEST(test_vectorized_broadcasting<ColMajor>()); | 
|  | CALL_SUBTEST(test_vectorized_broadcasting<RowMajor>()); | 
|  | CALL_SUBTEST(test_static_broadcasting<ColMajor>()); | 
|  | CALL_SUBTEST(test_static_broadcasting<RowMajor>()); | 
|  | CALL_SUBTEST(test_fixed_size_broadcasting<ColMajor>()); | 
|  | CALL_SUBTEST(test_fixed_size_broadcasting<RowMajor>()); | 
|  | } |