|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | // TODO(mdevin): Free the cuda memory. | 
|  |  | 
|  | #define EIGEN_TEST_NO_LONGDOUBLE | 
|  | #define EIGEN_TEST_NO_COMPLEX | 
|  | #define EIGEN_TEST_FUNC cxx11_tensor_cuda | 
|  | #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int | 
|  | #define EIGEN_USE_GPU | 
|  |  | 
|  |  | 
|  | #include "main.h" | 
|  | #include <unsupported/Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  |  | 
|  | void test_cuda_elementwise_small() { | 
|  | Tensor<float, 1> in1(Eigen::array<int, 1>(2)); | 
|  | Tensor<float, 1> in2(Eigen::array<int, 1>(2)); | 
|  | Tensor<float, 1> out(Eigen::array<int, 1>(2)); | 
|  | in1.setRandom(); | 
|  | in2.setRandom(); | 
|  |  | 
|  | std::size_t in1_bytes = in1.size() * sizeof(float); | 
|  | std::size_t in2_bytes = in2.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_in1; | 
|  | float* d_in2; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_in1), in1_bytes); | 
|  | cudaMalloc((void**)(&d_in2), in2_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | Eigen::CudaStreamDevice stream; | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in1( | 
|  | d_in1, Eigen::array<int, 1>(2)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_in2( | 
|  | d_in2, Eigen::array<int, 1>(2)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1>, Eigen::Aligned> gpu_out( | 
|  | d_out, Eigen::array<int, 1>(2)); | 
|  |  | 
|  | gpu_out.device(gpu_device) = gpu_in1 + gpu_in2; | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, | 
|  | gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | VERIFY_IS_APPROX( | 
|  | out(Eigen::array<int, 1>(i)), | 
|  | in1(Eigen::array<int, 1>(i)) + in2(Eigen::array<int, 1>(i))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_cuda_elementwise() | 
|  | { | 
|  | Tensor<float, 3> in1(Eigen::array<int, 3>(72,53,97)); | 
|  | Tensor<float, 3> in2(Eigen::array<int, 3>(72,53,97)); | 
|  | Tensor<float, 3> in3(Eigen::array<int, 3>(72,53,97)); | 
|  | Tensor<float, 3> out(Eigen::array<int, 3>(72,53,97)); | 
|  | in1.setRandom(); | 
|  | in2.setRandom(); | 
|  | in3.setRandom(); | 
|  |  | 
|  | std::size_t in1_bytes = in1.size() * sizeof(float); | 
|  | std::size_t in2_bytes = in2.size() * sizeof(float); | 
|  | std::size_t in3_bytes = in3.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_in1; | 
|  | float* d_in2; | 
|  | float* d_in3; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_in1), in1_bytes); | 
|  | cudaMalloc((void**)(&d_in2), in2_bytes); | 
|  | cudaMalloc((void**)(&d_in3), in3_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_in2, in2.data(), in2_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_in3, in3.data(), in3_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | Eigen::CudaStreamDevice stream; | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in1(d_in1, Eigen::array<int, 3>(72,53,97)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in2(d_in2, Eigen::array<int, 3>(72,53,97)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_in3(d_in3, Eigen::array<int, 3>(72,53,97)); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3> > gpu_out(d_out, Eigen::array<int, 3>(72,53,97)); | 
|  |  | 
|  | gpu_out.device(gpu_device) = gpu_in1 + gpu_in2 * gpu_in3; | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 72; ++i) { | 
|  | for (int j = 0; j < 53; ++j) { | 
|  | for (int k = 0; k < 97; ++k) { | 
|  | VERIFY_IS_APPROX(out(Eigen::array<int, 3>(i,j,k)), in1(Eigen::array<int, 3>(i,j,k)) + in2(Eigen::array<int, 3>(i,j,k)) * in3(Eigen::array<int, 3>(i,j,k))); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_cuda_reduction() | 
|  | { | 
|  | Tensor<float, 4> in1(72,53,97,113); | 
|  | Tensor<float, 2> out(72,97); | 
|  | in1.setRandom(); | 
|  |  | 
|  | std::size_t in1_bytes = in1.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_in1; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_in1), in1_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_in1, in1.data(), in1_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4> > gpu_in1(d_in1, 72,53,97,113); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2> > gpu_out(d_out, 72,97); | 
|  |  | 
|  | array<int, 2> reduction_axis; | 
|  | reduction_axis[0] = 1; | 
|  | reduction_axis[1] = 3; | 
|  |  | 
|  | gpu_out.device(gpu_device) = gpu_in1.maximum(reduction_axis); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 72; ++i) { | 
|  | for (int j = 0; j < 97; ++j) { | 
|  | float expected = 0; | 
|  | for (int k = 0; k < 53; ++k) { | 
|  | for (int l = 0; l < 113; ++l) { | 
|  | expected = | 
|  | std::max<float>(expected, in1(i, k, j, l)); | 
|  | } | 
|  | } | 
|  | VERIFY_IS_APPROX(out(i,j), expected); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_cuda_contraction() | 
|  | { | 
|  | // with these dimensions, the output has 300 * 140 elements, which is | 
|  | // more than 30 * 1024, which is the number of threads in blocks on | 
|  | // a 15 SM GK110 GPU | 
|  | Tensor<float, 4, DataLayout> t_left(6, 50, 3, 31); | 
|  | Tensor<float, 5, DataLayout> t_right(Eigen::array<int, 5>(3, 31, 7, 20, 1)); | 
|  | Tensor<float, 5, DataLayout> t_result(Eigen::array<int, 5>(6, 50, 7, 20, 1)); | 
|  |  | 
|  | t_left.setRandom(); | 
|  | t_right.setRandom(); | 
|  |  | 
|  | std::size_t t_left_bytes = t_left.size()  * sizeof(float); | 
|  | std::size_t t_right_bytes = t_right.size() * sizeof(float); | 
|  | std::size_t t_result_bytes = t_result.size() * sizeof(float); | 
|  |  | 
|  | float* d_t_left; | 
|  | float* d_t_right; | 
|  | float* d_t_result; | 
|  |  | 
|  | cudaMalloc((void**)(&d_t_left), t_left_bytes); | 
|  | cudaMalloc((void**)(&d_t_right), t_right_bytes); | 
|  | cudaMalloc((void**)(&d_t_result), t_result_bytes); | 
|  |  | 
|  | cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_t_left(d_t_left, 6, 50, 3, 31); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_right(d_t_right, 3, 31, 7, 20, 1); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_t_result(d_t_result, 6, 50, 7, 20, 1); | 
|  |  | 
|  | typedef Eigen::Map<Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> > MapXf; | 
|  | MapXf m_left(t_left.data(), 300, 93); | 
|  | MapXf m_right(t_right.data(), 93, 140); | 
|  | Eigen::Matrix<float, Dynamic, Dynamic, DataLayout> m_result(300, 140); | 
|  |  | 
|  | typedef Tensor<float, 1>::DimensionPair DimPair; | 
|  | Eigen::array<DimPair, 2> dims; | 
|  | dims[0] = DimPair(2, 0); | 
|  | dims[1] = DimPair(3, 1); | 
|  |  | 
|  | m_result = m_left * m_right; | 
|  | gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims); | 
|  |  | 
|  | cudaMemcpy(t_result.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost); | 
|  |  | 
|  | for (size_t i = 0; i < t_result.dimensions().TotalSize(); i++) { | 
|  | if (fabs(t_result.data()[i] - m_result.data()[i]) >= 1e-4) { | 
|  | cout << "mismatch detected at index " << i << ": " << t_result.data()[i] << " vs " <<  m_result.data()[i] << endl; | 
|  | assert(false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_cuda_convolution_1d() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> input(74,37,11,137); | 
|  | Tensor<float, 1, DataLayout> kernel(4); | 
|  | Tensor<float, 4, DataLayout> out(74,34,11,137); | 
|  | input = input.constant(10.0f) + input.random(); | 
|  | kernel = kernel.constant(7.0f) + kernel.random(); | 
|  |  | 
|  | std::size_t input_bytes = input.size() * sizeof(float); | 
|  | std::size_t kernel_bytes = kernel.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_input; | 
|  | float* d_kernel; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_input), input_bytes); | 
|  | cudaMalloc((void**)(&d_kernel), kernel_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input, 74,37,11,137); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1, DataLayout> > gpu_kernel(d_kernel, 4); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out, 74,34,11,137); | 
|  |  | 
|  | Eigen::array<int, 1> dims(1); | 
|  | gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 74; ++i) { | 
|  | for (int j = 0; j < 34; ++j) { | 
|  | for (int k = 0; k < 11; ++k) { | 
|  | for (int l = 0; l < 137; ++l) { | 
|  | const float result = out(i,j,k,l); | 
|  | const float expected = input(i,j+0,k,l) * kernel(0) + input(i,j+1,k,l) * kernel(1) + | 
|  | input(i,j+2,k,l) * kernel(2) + input(i,j+3,k,l) * kernel(3); | 
|  | VERIFY_IS_APPROX(result, expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_cuda_convolution_inner_dim_col_major_1d() | 
|  | { | 
|  | Tensor<float, 4, ColMajor> input(74,9,11,7); | 
|  | Tensor<float, 1, ColMajor> kernel(4); | 
|  | Tensor<float, 4, ColMajor> out(71,9,11,7); | 
|  | input = input.constant(10.0f) + input.random(); | 
|  | kernel = kernel.constant(7.0f) + kernel.random(); | 
|  |  | 
|  | std::size_t input_bytes = input.size() * sizeof(float); | 
|  | std::size_t kernel_bytes = kernel.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_input; | 
|  | float* d_kernel; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_input), input_bytes); | 
|  | cudaMalloc((void**)(&d_kernel), kernel_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_input(d_input,74,9,11,7); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1, ColMajor> > gpu_kernel(d_kernel,4); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, ColMajor> > gpu_out(d_out,71,9,11,7); | 
|  |  | 
|  | Eigen::array<int, 1> dims(0); | 
|  | gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 71; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 11; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | const float result = out(i,j,k,l); | 
|  | const float expected = input(i+0,j,k,l) * kernel(0) + input(i+1,j,k,l) * kernel(1) + | 
|  | input(i+2,j,k,l) * kernel(2) + input(i+3,j,k,l) * kernel(3); | 
|  | VERIFY_IS_APPROX(result, expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void test_cuda_convolution_inner_dim_row_major_1d() | 
|  | { | 
|  | Tensor<float, 4, RowMajor> input(7,9,11,74); | 
|  | Tensor<float, 1, RowMajor> kernel(4); | 
|  | Tensor<float, 4, RowMajor> out(7,9,11,71); | 
|  | input = input.constant(10.0f) + input.random(); | 
|  | kernel = kernel.constant(7.0f) + kernel.random(); | 
|  |  | 
|  | std::size_t input_bytes = input.size() * sizeof(float); | 
|  | std::size_t kernel_bytes = kernel.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_input; | 
|  | float* d_kernel; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_input), input_bytes); | 
|  | cudaMalloc((void**)(&d_kernel), kernel_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_input(d_input, 7,9,11,74); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 1, RowMajor> > gpu_kernel(d_kernel, 4); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, RowMajor> > gpu_out(d_out, 7,9,11,71); | 
|  |  | 
|  | Eigen::array<int, 1> dims(3); | 
|  | gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 7; ++i) { | 
|  | for (int j = 0; j < 9; ++j) { | 
|  | for (int k = 0; k < 11; ++k) { | 
|  | for (int l = 0; l < 71; ++l) { | 
|  | const float result = out(i,j,k,l); | 
|  | const float expected = input(i,j,k,l+0) * kernel(0) + input(i,j,k,l+1) * kernel(1) + | 
|  | input(i,j,k,l+2) * kernel(2) + input(i,j,k,l+3) * kernel(3); | 
|  | VERIFY_IS_APPROX(result, expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_cuda_convolution_2d() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> input(74,37,11,137); | 
|  | Tensor<float, 2, DataLayout> kernel(3,4); | 
|  | Tensor<float, 4, DataLayout> out(74,35,8,137); | 
|  | input = input.constant(10.0f) + input.random(); | 
|  | kernel = kernel.constant(7.0f) + kernel.random(); | 
|  |  | 
|  | std::size_t input_bytes = input.size() * sizeof(float); | 
|  | std::size_t kernel_bytes = kernel.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_input; | 
|  | float* d_kernel; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_input), input_bytes); | 
|  | cudaMalloc((void**)(&d_kernel), kernel_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_input(d_input,74,37,11,137); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> > gpu_kernel(d_kernel,3,4); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout> > gpu_out(d_out,74,35,8,137); | 
|  |  | 
|  | Eigen::array<int, 2> dims(1,2); | 
|  | gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 74; ++i) { | 
|  | for (int j = 0; j < 35; ++j) { | 
|  | for (int k = 0; k < 8; ++k) { | 
|  | for (int l = 0; l < 137; ++l) { | 
|  | const float result = out(i,j,k,l); | 
|  | const float expected = input(i,j+0,k+0,l) * kernel(0,0) + | 
|  | input(i,j+1,k+0,l) * kernel(1,0) + | 
|  | input(i,j+2,k+0,l) * kernel(2,0) + | 
|  | input(i,j+0,k+1,l) * kernel(0,1) + | 
|  | input(i,j+1,k+1,l) * kernel(1,1) + | 
|  | input(i,j+2,k+1,l) * kernel(2,1) + | 
|  | input(i,j+0,k+2,l) * kernel(0,2) + | 
|  | input(i,j+1,k+2,l) * kernel(1,2) + | 
|  | input(i,j+2,k+2,l) * kernel(2,2) + | 
|  | input(i,j+0,k+3,l) * kernel(0,3) + | 
|  | input(i,j+1,k+3,l) * kernel(1,3) + | 
|  | input(i,j+2,k+3,l) * kernel(2,3); | 
|  | VERIFY_IS_APPROX(result, expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template<int DataLayout> | 
|  | static void test_cuda_convolution_3d() | 
|  | { | 
|  | Tensor<float, 5, DataLayout> input(Eigen::array<int, 5>(74,37,11,137,17)); | 
|  | Tensor<float, 3, DataLayout> kernel(3,4,2); | 
|  | Tensor<float, 5, DataLayout> out(Eigen::array<int, 5>(74,35,8,136,17)); | 
|  | input = input.constant(10.0f) + input.random(); | 
|  | kernel = kernel.constant(7.0f) + kernel.random(); | 
|  |  | 
|  | std::size_t input_bytes = input.size() * sizeof(float); | 
|  | std::size_t kernel_bytes = kernel.size() * sizeof(float); | 
|  | std::size_t out_bytes = out.size() * sizeof(float); | 
|  |  | 
|  | float* d_input; | 
|  | float* d_kernel; | 
|  | float* d_out; | 
|  | cudaMalloc((void**)(&d_input), input_bytes); | 
|  | cudaMalloc((void**)(&d_kernel), kernel_bytes); | 
|  | cudaMalloc((void**)(&d_out), out_bytes); | 
|  |  | 
|  | cudaMemcpy(d_input, input.data(), input_bytes, cudaMemcpyHostToDevice); | 
|  | cudaMemcpy(d_kernel, kernel.data(), kernel_bytes, cudaMemcpyHostToDevice); | 
|  |  | 
|  | cudaStream_t stream; | 
|  | assert(cudaStreamCreate(&stream) == cudaSuccess); | 
|  | Eigen::GpuDevice gpu_device(&stream); | 
|  |  | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_input(d_input,74,37,11,137,17); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 3, DataLayout> > gpu_kernel(d_kernel,3,4,2); | 
|  | Eigen::TensorMap<Eigen::Tensor<float, 5, DataLayout> > gpu_out(d_out,74,35,8,136,17); | 
|  |  | 
|  | Eigen::array<int, 3> dims(1,2,3); | 
|  | gpu_out.device(gpu_device) = gpu_input.convolve(gpu_kernel, dims); | 
|  |  | 
|  | assert(cudaMemcpyAsync(out.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess); | 
|  | assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess); | 
|  |  | 
|  | for (int i = 0; i < 74; ++i) { | 
|  | for (int j = 0; j < 35; ++j) { | 
|  | for (int k = 0; k < 8; ++k) { | 
|  | for (int l = 0; l < 136; ++l) { | 
|  | for (int m = 0; m < 17; ++m) { | 
|  | const float result = out(i,j,k,l,m); | 
|  | const float expected = input(i,j+0,k+0,l+0,m) * kernel(0,0,0) + | 
|  | input(i,j+1,k+0,l+0,m) * kernel(1,0,0) + | 
|  | input(i,j+2,k+0,l+0,m) * kernel(2,0,0) + | 
|  | input(i,j+0,k+1,l+0,m) * kernel(0,1,0) + | 
|  | input(i,j+1,k+1,l+0,m) * kernel(1,1,0) + | 
|  | input(i,j+2,k+1,l+0,m) * kernel(2,1,0) + | 
|  | input(i,j+0,k+2,l+0,m) * kernel(0,2,0) + | 
|  | input(i,j+1,k+2,l+0,m) * kernel(1,2,0) + | 
|  | input(i,j+2,k+2,l+0,m) * kernel(2,2,0) + | 
|  | input(i,j+0,k+3,l+0,m) * kernel(0,3,0) + | 
|  | input(i,j+1,k+3,l+0,m) * kernel(1,3,0) + | 
|  | input(i,j+2,k+3,l+0,m) * kernel(2,3,0) + | 
|  | input(i,j+0,k+0,l+1,m) * kernel(0,0,1) + | 
|  | input(i,j+1,k+0,l+1,m) * kernel(1,0,1) + | 
|  | input(i,j+2,k+0,l+1,m) * kernel(2,0,1) + | 
|  | input(i,j+0,k+1,l+1,m) * kernel(0,1,1) + | 
|  | input(i,j+1,k+1,l+1,m) * kernel(1,1,1) + | 
|  | input(i,j+2,k+1,l+1,m) * kernel(2,1,1) + | 
|  | input(i,j+0,k+2,l+1,m) * kernel(0,2,1) + | 
|  | input(i,j+1,k+2,l+1,m) * kernel(1,2,1) + | 
|  | input(i,j+2,k+2,l+1,m) * kernel(2,2,1) + | 
|  | input(i,j+0,k+3,l+1,m) * kernel(0,3,1) + | 
|  | input(i,j+1,k+3,l+1,m) * kernel(1,3,1) + | 
|  | input(i,j+2,k+3,l+1,m) * kernel(2,3,1); | 
|  | VERIFY_IS_APPROX(result, expected); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void test_cxx11_tensor_cuda() | 
|  | { | 
|  | CALL_SUBTEST(test_cuda_elementwise_small()); | 
|  | CALL_SUBTEST(test_cuda_elementwise()); | 
|  | CALL_SUBTEST(test_cuda_reduction()); | 
|  | CALL_SUBTEST(test_cuda_contraction<ColMajor>()); | 
|  | CALL_SUBTEST(test_cuda_contraction<RowMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_1d<ColMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_1d<RowMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_inner_dim_col_major_1d()); | 
|  | CALL_SUBTEST(test_cuda_convolution_inner_dim_row_major_1d()); | 
|  | CALL_SUBTEST(test_cuda_convolution_2d<ColMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_2d<RowMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_3d<ColMajor>()); | 
|  | CALL_SUBTEST(test_cuda_convolution_3d<RowMajor>()); | 
|  | } |