|  | // This file is part of Eigen, a lightweight C++ template library | 
|  | // for linear algebra. | 
|  | // | 
|  | // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> | 
|  | // | 
|  | // This Source Code Form is subject to the terms of the Mozilla | 
|  | // Public License v. 2.0. If a copy of the MPL was not distributed | 
|  | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. | 
|  |  | 
|  | #include "main.h" | 
|  |  | 
|  | #include <Eigen/CXX11/Tensor> | 
|  |  | 
|  | using Eigen::Tensor; | 
|  | using Eigen::array; | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_simple_shuffling() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 4> shuffles; | 
|  | shuffles[0] = 0; | 
|  | shuffles[1] = 1; | 
|  | shuffles[2] = 2; | 
|  | shuffles[3] = 3; | 
|  |  | 
|  | Tensor<float, 4, DataLayout> no_shuffle; | 
|  | no_shuffle = tensor.shuffle(shuffles); | 
|  |  | 
|  | VERIFY_IS_EQUAL(no_shuffle.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(no_shuffle.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(no_shuffle.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(no_shuffle.dimension(3), 7); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i,j,k,l), no_shuffle(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | shuffles[0] = 2; | 
|  | shuffles[1] = 3; | 
|  | shuffles[2] = 1; | 
|  | shuffles[3] = 0; | 
|  | Tensor<float, 4, DataLayout> shuffle; | 
|  | shuffle = tensor.shuffle(shuffles); | 
|  |  | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(1), 7); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(2), 3); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(3), 2); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_expr_shuffling() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | array<ptrdiff_t, 4> shuffles; | 
|  | shuffles[0] = 2; | 
|  | shuffles[1] = 3; | 
|  | shuffles[2] = 1; | 
|  | shuffles[3] = 0; | 
|  | Tensor<float, 4, DataLayout> expected; | 
|  | expected = tensor.shuffle(shuffles); | 
|  |  | 
|  | Tensor<float, 4, DataLayout> result(5,7,3,2); | 
|  |  | 
|  | array<int, 4> src_slice_dim{{2,3,1,7}}; | 
|  | array<int, 4> src_slice_start{{0,0,0,0}}; | 
|  | array<int, 4> dst_slice_dim{{1,7,3,2}}; | 
|  | array<int, 4> dst_slice_start{{0,0,0,0}}; | 
|  |  | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | result.slice(dst_slice_start, dst_slice_dim) = | 
|  | tensor.slice(src_slice_start, src_slice_dim).shuffle(shuffles); | 
|  | src_slice_start[2] += 1; | 
|  | dst_slice_start[0] += 1; | 
|  | } | 
|  |  | 
|  | VERIFY_IS_EQUAL(result.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(result.dimension(1), 7); | 
|  | VERIFY_IS_EQUAL(result.dimension(2), 3); | 
|  | VERIFY_IS_EQUAL(result.dimension(3), 2); | 
|  |  | 
|  | for (int i = 0; i < expected.dimension(0); ++i) { | 
|  | for (int j = 0; j < expected.dimension(1); ++j) { | 
|  | for (int k = 0; k < expected.dimension(2); ++k) { | 
|  | for (int l = 0; l < expected.dimension(3); ++l) { | 
|  | VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | dst_slice_start[0] = 0; | 
|  | result.setRandom(); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | result.slice(dst_slice_start, dst_slice_dim) = | 
|  | tensor.shuffle(shuffles).slice(dst_slice_start, dst_slice_dim); | 
|  | dst_slice_start[0] += 1; | 
|  | } | 
|  |  | 
|  | for (int i = 0; i < expected.dimension(0); ++i) { | 
|  | for (int j = 0; j < expected.dimension(1); ++j) { | 
|  | for (int k = 0; k < expected.dimension(2); ++k) { | 
|  | for (int l = 0; l < expected.dimension(3); ++l) { | 
|  | VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_shuffling_as_value() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
|  | tensor.setRandom(); | 
|  | array<ptrdiff_t, 4> shuffles; | 
|  | shuffles[2] = 0; | 
|  | shuffles[3] = 1; | 
|  | shuffles[1] = 2; | 
|  | shuffles[0] = 3; | 
|  | Tensor<float, 4, DataLayout> shuffle(5,7,3,2); | 
|  | shuffle.shuffle(shuffles) = tensor; | 
|  |  | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(0), 5); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(1), 7); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(2), 3); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(3), 2); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(k,l,j,i)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | array<ptrdiff_t, 4> no_shuffle; | 
|  | no_shuffle[0] = 0; | 
|  | no_shuffle[1] = 1; | 
|  | no_shuffle[2] = 2; | 
|  | no_shuffle[3] = 3; | 
|  | Tensor<float, 4, DataLayout> shuffle2(5,7,3,2); | 
|  | shuffle2.shuffle(shuffles) = tensor.shuffle(no_shuffle); | 
|  | for (int i = 0; i < 5; ++i) { | 
|  | for (int j = 0; j < 7; ++j) { | 
|  | for (int k = 0; k < 3; ++k) { | 
|  | for (int l = 0; l < 2; ++l) { | 
|  | VERIFY_IS_EQUAL(shuffle2(i,j,k,l), shuffle(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | template <int DataLayout> | 
|  | static void test_shuffle_unshuffle() | 
|  | { | 
|  | Tensor<float, 4, DataLayout> tensor(2,3,5,7); | 
|  | tensor.setRandom(); | 
|  |  | 
|  | // Choose a random permutation. | 
|  | array<ptrdiff_t, 4> shuffles; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | shuffles[i] = i; | 
|  | } | 
|  | array<ptrdiff_t, 4> shuffles_inverse; | 
|  | for (int i = 0; i < 4; ++i) { | 
|  | const ptrdiff_t index = internal::random<ptrdiff_t>(i, 3); | 
|  | shuffles_inverse[shuffles[index]] = i; | 
|  | std::swap(shuffles[i], shuffles[index]); | 
|  | } | 
|  |  | 
|  | Tensor<float, 4, DataLayout> shuffle; | 
|  | shuffle = tensor.shuffle(shuffles).shuffle(shuffles_inverse); | 
|  |  | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(0), 2); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(1), 3); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(2), 5); | 
|  | VERIFY_IS_EQUAL(shuffle.dimension(3), 7); | 
|  |  | 
|  | for (int i = 0; i < 2; ++i) { | 
|  | for (int j = 0; j < 3; ++j) { | 
|  | for (int k = 0; k < 5; ++k) { | 
|  | for (int l = 0; l < 7; ++l) { | 
|  | VERIFY_IS_EQUAL(tensor(i,j,k,l), shuffle(i,j,k,l)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void test_cxx11_tensor_shuffling() | 
|  | { | 
|  | CALL_SUBTEST(test_simple_shuffling<ColMajor>()); | 
|  | CALL_SUBTEST(test_simple_shuffling<RowMajor>()); | 
|  | CALL_SUBTEST(test_expr_shuffling<ColMajor>()); | 
|  | CALL_SUBTEST(test_expr_shuffling<RowMajor>()); | 
|  | CALL_SUBTEST(test_shuffling_as_value<ColMajor>()); | 
|  | CALL_SUBTEST(test_shuffling_as_value<RowMajor>()); | 
|  | CALL_SUBTEST(test_shuffle_unshuffle<ColMajor>()); | 
|  | CALL_SUBTEST(test_shuffle_unshuffle<RowMajor>()); | 
|  | } |